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1. Derivation of Energy Function in
Orientation Level
To get an integral in orientation level, we reorganize

the orientation-related part of the Newton-Euler equation as
follows,

𝐪(𝑛+1)𝑖 − 𝐪(𝑛)𝑖 − ℎ
2

[

0
𝝎(𝑛)
𝑖

]

𝐪(𝑛)𝑖 = ℎ2

2

[

0
𝐈−1𝑖 𝐓(𝑛+1)

𝑖

]

𝐪(𝑛)𝑖 (1)

Multiplying both sides of the equation by 𝐪̄(𝑛)𝑖 ,

𝐪(𝑛+1)𝑖 𝐪̄(𝑛)𝑖 − 𝐮(𝑛)𝑖 = ℎ2

2

[

𝟎
𝐈−1𝑖

] [

𝟎
𝐓(𝑛+1)
𝑖

]

, (2)

where 𝐮(𝑛)𝑖 = 𝐪𝐼 +
ℎ
2

[

0
𝝎(𝑛)
𝑖

]

.

Substituting
[

0
𝐓𝑖

]

= 1
2 𝐓̃𝑖𝐪̄𝑖 into Eqn. (2) and multiplying

both sides by 𝐪(𝑛)𝑖 , and moving the moment of inertia to the
left-hand side, we get

𝐈̃𝑖((𝐪
(𝑛+1)
𝑖 − 𝐮(𝑛)𝑖 )𝐪̄(𝑛)𝑖 ) = ℎ2

4
𝐓̃𝑖𝐪̄𝑖 (3)

for every discrete elements.
Torque parameter 𝐓̃𝑖 is conservative about 𝐸, 𝐓̃𝑖 =

−∇𝐪𝑖𝐸[4]. Multiplying both sides by 𝐪(𝑛)𝑖 , we further have:

(̃𝐈𝑖((𝐪
(𝑛+1)
𝑖 − 𝐮(𝑛)𝑖 )𝐪̄(𝑛)𝑖 ))𝐪(𝑛)𝑖 = −ℎ2

4
∇𝐪𝑖𝐸. (4)

An optimization formulation can be obtained by trans-
posing the right-hand side of Eqn. (4) to the left and
integrating:

min
𝐪(𝑛+1)𝑖

2
ℎ2

(𝐪(𝑛+1)𝑖 𝐪̄(𝑛)𝑖 −𝐮(𝑛)𝑖 )̃𝐈𝑖(𝐪
(𝑛+1)
𝑖 𝐪̄(𝑛)𝑖 −𝐮(𝑛)𝑖 )+𝐸(𝑛+1). (5)

By summing 𝑖, the optimization function can be obtained.

min
𝐪(𝑛+1)

2
ℎ2

∑

𝑖

‖

‖

‖

𝐪(𝑛+1)𝑖 𝐪̄(𝑛)𝑖 − 𝐮(𝑛)𝑖
‖

‖

‖𝐈̃𝑖
+ 𝐸(𝑛+1). (6)

2. Gradient and Hessian of the Cosserat
Energy
We should revisit the matrix multiplication form of

quaternion multiplication first.

𝐩𝐪 = 𝑄(𝐩)𝐪 =
[

ℜ(𝐩) −ℑ(𝐩)𝑇
ℑ(𝐩) ℜ(𝐩)𝟏3×3 + [ℑ(𝐩)]×

] [

ℜ(𝐪)
ℑ(𝐪)

]

, (7)
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where the matrix [𝐩]× is used to represent the vector cross
product as a matrix-vector product 𝐩 × 𝐪 = [𝐩]×𝐪. Right
multiplying a quaternion can also be written in the form of
a matrix-vector product:

𝐩𝐪 = 𝑄̂(𝐪)𝐩 =
[

ℜ(𝐪) −ℑ(𝐪)𝑇
ℑ(𝐪) ℜ(𝐪)𝟏3×3 − [ℑ(𝐪)]×

] [

ℜ(𝐩)
ℑ(𝐩)

]

. (8)

According to [2], the derivative of a rotated vector 𝐑(𝐪)𝐩
w.r.t. 𝐪 is

𝜕(𝐑(𝐪)𝐩)
𝜕𝐪

= 2𝑄̂(𝐩𝐪̄)3×4, (9)

where (⋅)3×4 means we only take the lower 3 × 4 part of the
matrix.

Next, we give the specific derivatives of the strain
measure and the Darboux vector. Take the derivative of 𝚪𝑖𝑗
with respect to 𝐱𝑖, we get

𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
= −1

𝑙
(𝑅(𝐪𝑖𝑗)𝑅(𝐪0𝑖𝑗))

𝑇 . (10)

Take the derivative of 𝚪𝑖𝑗 w.r.t. 𝐪𝑖, we get

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
= 1

𝑙𝑅(𝐪
0
𝑖𝑗)

𝑇 𝑄̂(𝜕𝑠𝐱𝐪𝑖𝑗)3×4𝑑𝑖𝑎𝑔(1,−1,−1,−1)
𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

,

(11)

where

𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

=
𝟏 − 𝐪𝑖𝑗𝐪𝑇𝑖𝑗
‖

‖

𝐪𝑚‖‖
. (12)

The derivative of 𝛀 w.r.t. 𝐪𝑖 is

𝜕𝛀𝑖𝑗

𝜕𝐪𝑖
= − 2

𝑙 (
1
2 𝑄̂(𝐪𝑗 − 𝐪𝑖)𝑑𝑖𝑎𝑔(1,−1,−1,−1)

𝜕𝐪𝑖𝑗
𝜕𝐪𝑚

−𝑄(𝐪̄𝑖𝑗))

(13)

The force derived from 𝐸𝑆𝐸 and the torque derived from
𝐸𝐵𝑇 have been calculated in Eqns. (Main-26, Main-27), the
force derived from 𝐸𝑆𝐸 can be calculated by the following
equation

𝐓̃𝑆𝐸
𝑖 = −∇𝐪𝑖𝐸

𝑆𝐸
𝑖𝑗 = −(

𝜕𝐸𝑆𝐸
𝑖𝑗

𝜕𝚪𝑖𝑗

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇 = −𝑙(

𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Γ𝚪𝑖𝑗 .

(14)

It is very difficult to further derive these derivatives with
respect to quaternions using the quaternion representation.
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For simplicity, we use the Gauss-Newton method, using an
approximate Hessian matrix to ignore the terms containing
the second derivative of 𝚪 and 𝛀. For example,

𝐇𝑆𝐸
𝐱𝑖,𝐱𝑖

≈ 𝑙(
𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
)𝑇𝐶Γ 𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
,

𝐇𝑆𝐸
𝐪𝑖,𝐱𝑖

≈ 𝑙(
𝜕𝚪𝑖𝑗

𝜕𝐪𝑖
)𝑇𝐶Γ 𝜕𝚪𝑖𝑗

𝜕𝐱𝑖
.

(15)

The other blocks of the Hessian matrix are calculated
similarly.

3. Asymmetry Introduced by Torques in [3]
In this section, we first construct a linear system in

angular velocity level following Baraff et al.[1]. We take the
derivative of the shear torque in [3] to show that the resulting
coefficient matrix of the linear system is asymmetric. In a
similar way, we explain that the twist torque in [3] is not
integrable because its torque derivative matrix in orientation
level is asymmetric.

For any discrete element 𝑖, the implicit Euler scheme for
updating orientation is

⎧

⎪

⎨

⎪

⎩

Δ𝐪𝑖 =
1
2ℎ

[

0
𝝎(𝑛+1)
𝑖

]

𝐪𝑛𝑖
Δ𝝎𝑖 = ℎ𝐈−1𝑖 𝐓(𝑛+1)

𝑖 .
(16)

Here we consider a simplified case where the torque 𝐓𝑖
depends only on orientation, which is sufficient to show
that the coefficient matrix of the angular velocity part in the
linear system is asymmetric. Applying a first-order Taylor
series expansion to 𝑇𝑖

Δ𝝎𝑖 = ℎ𝐈−1𝑖 (𝐓(𝑛)
𝑖 +

∑

𝑘

𝜕𝐓𝑖
𝜕𝐪𝑘

Δ𝐪𝑘). (17)

Eliminating Δ𝑞 from the above equation, using matrix mul-
tiplication in Eqn. (8) instead of quaternion multiplication,
we obtain

Δ𝝎𝑖 = ℎ𝐈−1𝑖 (𝑇 (𝑛)
𝑖 + ℎ

2
∑

𝑘

𝜕𝑇𝑖
𝜕𝐪𝑘

𝑄̂(𝐪𝑘)
[

0
𝝎(𝑛+1)
𝑘

]

). (18)

After regrouping, each particle has the following equation

(𝐈𝑖 −
ℎ2

2
𝜕𝑇𝑖
𝜕𝐪𝑖

𝑄̂(𝐪𝑖)
[

𝟎
𝟏

]

)Δ𝝎𝑖 −
ℎ2

2
∑

𝑘≠𝑖

𝜕𝑇𝑖
𝜕𝐪𝑘

𝑄̂(𝐪𝑘)
[

𝟎
𝟏

]

Δ𝝎𝑘

= ℎ(𝑇 (𝑛)
𝑖 + ℎ

2
∑

𝑘

𝜕𝑇𝑖
𝜕𝐪𝑘

𝑄̂(𝐪𝑘)
[

𝟎
𝟏

]

𝝎𝑘), 𝑖 = 1, ..., 𝑚,

(19)

, forming a linear system.
[

𝟎
𝟏

]

is a 4 × 3 matrix, and its

upper and lower parts are respectively a 3×3 identity matrix

and a 1 × 3 zero vector. Defining 𝐾𝑖𝑗 = 𝜕𝑇𝑖
𝜕𝐪𝑗

𝑄̂(𝐪𝑗)
[

𝟎
𝟏

]

and

𝐾𝑗𝑖 = 𝜕𝑇𝑗
𝜕𝐪𝑖

𝑄̂(𝐪𝑖)
[

𝟎
𝟏

]

, it is easy to see that 𝐾𝑖𝑗 and 𝐾𝑗𝑖

are 3 × 3 block matrices in the symmetrical position of the
coefficient matrix(omit ℎ2

2 ).
In [3], the shear torque of the bond are obtained by

calculating the rotation angle between the shear direction
and the normal direction. The shear direction 𝐝𝑠 is defined
as

[

0
𝐝𝑠

]

= 1
2
(𝐪𝑖

[

0
𝐝0

]

𝐪̄𝑖 + 𝐪𝑗
[

0
𝐝0

]

𝐪̄𝑗). (20)

where 𝐝0 is the initial bond direction. The shear torque
applied to particle 𝑖 is

𝐌𝑠
𝑖 =

1
2
𝑙𝑘𝑠(𝐧 ×

𝐝𝑠
‖

‖

𝐝𝑠‖‖
), (21)

where 𝐧 = (𝐱𝑖 − 𝐱𝑗)∕
‖

‖

‖

𝐱𝑖 − 𝐱𝑗
‖

‖

‖

. The torque with respect to
the opposite particle 𝑗 is 𝐌𝑠

𝑗 = 𝐌𝑠
𝑖 .

Now we can substitute 𝐌𝑠 into the block matrices 𝐾𝑖𝑗
and 𝐾𝑗𝑖 from the coefficient matrix in Eqn. (19)

𝐾𝑖𝑗 =
𝜕𝐌𝑠

𝑖
𝜕𝐝𝑠

𝜕𝐝𝑠
𝜕𝐪𝑗

𝑄̂(𝐪𝑗)
[

𝟎
𝟏

]

,

𝐾𝑗𝑖 =
𝜕𝐌𝑠

𝑖
𝜕𝐝𝑠

𝜕𝐝𝑠
𝜕𝐪𝑖

𝑄̂(𝐪𝑖)
[

𝟎
𝟏

]

.
(22)

It can be seen that the front part of 𝐾𝑖𝑗 and 𝐾𝑗𝑖 are both

2 𝜕𝐌𝑠
𝑖

𝜕𝐝𝑠
, while the back part is only related to 𝐪𝑖 and 𝐪𝑗 re-

spectively. 𝐪𝑖 and 𝐪𝑗 are completely independent variables,
so for any 𝐪𝑖, there is a 𝐪𝑗 such that 𝐾𝑖𝑗 ≠ 𝐾𝑇

𝑗𝑖 , i.e, the
coefficient matrix is asymmetric.

For implicit integration in orientation level, we first
convert the torque into the torque parameter according
to Eqn. (Main-28), because the torque parameter can be
considered as the first derivative of energy with respect to
the quaternion. We further take derivatives of the obtained
torque parameters, and find that its torque derivative matrix
is asymmetric.

The torque parameter applied to the discrete element 𝑖, 𝑗
has the following forms respectively,

2𝑄̂(𝐪𝑖)
[

0
𝐓𝑖

]

, 2𝑄̂(𝐪𝑗)
[

0
𝐓𝑗

]

. (23)

In [3], the twist torque has the following calculation form,

𝐌𝑡
𝑖 = 𝑘𝑡(𝜃𝐚 ⋅ 𝐧)𝐧, (24)

where 𝐚 = ℑ(𝐪𝑡)
|ℑ(𝐪𝑡)|

, 𝜃 = 2 arccosℜ
(

𝐪𝑡
)

, and 𝐪𝑡 = 𝐪𝑗 𝐪̄𝑖.
And the twist torque with respect to the opposite particle 𝑗
is 𝐌𝑡

𝑗 = −𝐌𝑡
𝑗 .

Here, if we use 𝐿𝑖𝑗 , 𝐿𝑗𝑖 to represent the derivative of
torque paramters in Eqn. (23), we have

𝐿𝑖𝑗 = 2𝑄̂(𝐪𝑖)
[

0
𝐼

] 𝜕𝐌𝑡
𝑖

𝜕𝐪𝑡
𝑄̂(𝐪̄𝑖)

𝐿𝑗𝑖 = −2𝑄̂(𝐪𝑗)
[

0
𝐼

] 𝜕𝐌𝑡
𝑖

𝜕𝐪𝑡
𝑄(𝑞𝑗)𝑑𝑖𝑎𝑔(1,−1,−1,−1).

(25)
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The asymmetry of the matrix can be found like Eqn. (22),
which means that the torque in [3] is not integrable in
orientation level.
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