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MS-NeRF: Multi-Space Neural Radiance Fields
Ze-Xin Yin , Peng-Yi Jiao , Jiaxiong Qiu , Ming-Ming Cheng , Senior Member, IEEE, and Bo Ren

Abstract—Existing Neural Radiance Fields (NeRF) methods suf-
fer from the existence of reflective objects, often resulting in blurry
or distorted rendering. Instead of calculating a single radiance
field, we propose a multi-space neural radiance field (MS-NeRF)
that represents the scene using a group of feature fields in parallel
sub-spaces, which leads to a better understanding of the neural
network toward the existence of reflective and refractive objects.
Our multi-space scheme works as an enhancement to existing NeRF
methods, with only small computational overheads needed for
training and inferring the extra-space outputs. We design different
multi-space modules for representative MLP-based and grid-based
NeRF methods, which improve Mip-NeRF 360 by 4.15 dB in PSNR
with 0.5% extra parameters and further improve TensoRF by
2.71 dB with 0.046% extra parameters on reflective regions without
degrading the rendering quality on other regions. We further
construct a novel dataset consisting of 33 synthetic scenes and 7 real
captured scenes with complex reflection and refraction, where we
design complex camera paths to fully benchmark the robustness
of NeRF-based methods. Extensive experiments show that our
approach significantly outperforms the existing single-space NeRF
methods for rendering high-quality scenes concerned with complex
light paths through mirror-like objects.

Index Terms—Neural radiance fields, multi-space NeRF, dataset.

I. INTRODUCTION

N EURAL Radiance Fields (NeRF) [2] and its variants are
refreshing the community of neural rendering and 3D re-

construction, and the potential for more promising applications
is still under exploration. NeRF represents scenes as continuous
radiance fields stored by simple Multi-layer Perceptrons (MLPs)
and renders novel views by integrating the densities and ra-
diance, which are queried from the MLPs by points sampled
along the ray from the camera to the image plane. Since its first
presentation [2], many efforts have been investigated to enhance
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the method, such as extending to unbounded scenes [3], [4],
handling moving objects [5], [6], [7], or reconstructing from
pictures in the wild [8], [9], [10], [11].

However, rendering scenes with mirrors is still a challenging
task for state-of-the-art NeRF-like methods. One of the principle
assumptions for the NeRF method is the multi-view consistency
property of the target scenes [12], [13], [14], [15]. When there
are mirrors in the space, if one allows the viewpoints to move
360-degree around the scene, there is no consistency between
the front and back views of a mirror, since the mirror surface
and its reflected virtual image are only visible from a small
range of views. As a result, it is often required to manually label
the reflective surfaces in order to avoid falling into sub-optimal
convergences [16].

In this paper, we propose a novel multi-space NeRF method
to allow the automatic handling of mirror-like objects in the
360-degree high-fidelity rendering of scenes without any man-
ual labeling. Instead of regarding the euclidean scene space
as a single space, we treat it as composed of multiple vir-
tual sub-spaces, whose composition changes according to lo-
cation and view direction. We show that our approach using
multi-space decomposition leads to successful handlements of
complex reflections and refractions where the multi-view con-
sistency is heavily violated in the euclidean real space. Fur-
thermore, we show that the above benefits can be achieved
by designing a low-cost multi-space module and replacing the
original output layer with it. Therefore, our multi-space ap-
proach serves as a general enhancement to the NeRF-based
backbone, equipping most NeRF-like methods with the abil-
ity to model complex reflection and refraction, as shown in
Fig. 1.

Existing datasets have not paid enough attention to the 360-
degree rendering of scenes containing mirror-like objects, such
as RFFR [16] just has forward-facing scenes, and the Shiny
dataset in [17] with small viewpoints changes and cannot exhibit
view-dependent effects in large angle scale. Therefore, we con-
struct a novel dataset dedicated to evaluation for the 360-degree
high-fidelity rendering of scenes containing complex reflections
and refractions. In this dataset, we collect 33 synthesized scenes
and 7 captured real-world scenes. Each synthesized scene con-
sists of 120 images captured in the 360-degree circle path around
reflective or refractive objects, with 100 randomly split for train-
ing, 10 for validation, and 10 for evaluation. Furthermore, we
design more challenging paths for 10 of the synthesized scenes
to benchmark the robustness of NeRF-based methods, including
360-degree spiral paths where cameras gradually spiral up from
the equator to the pole and novel mirror-passing-through paths
where cameras move through the mirrors back and force, each of
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Fig. 1. These are test views from the novel mirror-passing-through path. The
first row is in front of the mirror, while the last row is behind the mirror.

which have 100 training views and 200 testing views following
the convention of NeRF dataset [2]. Each real-world scene is
captured randomly around scenes with reflective and refractive
objects, consisting of 62 to 118 images, and organized under the
convention of LLFF [18].

We then demonstrate the superiority of our approach by
comparisons, using three representative baseline models, i.e.,
NeRF [2], Mip-NeRF [19], and Mip-NeRF 360 [4], with and
without our multi-space module. Besides, we investigate the
grid-based acceleration methods, and we propose a hybrid multi-
space module based on classic methods, i.e., TensoRF [20] and
iNGP [21], to demonstrate the compatibility of our scheme. 3D
reconstruction methods have a stronger dependence on multi-
view consistency; therefore, we experimentally integrate our
multi-space module with a classic NeRF-based reconstruction
method, i.e., NeuS [22], and the rendering results indicate that
our module is also beneficial to reconstruction methods. Exper-
iments show that our approach not only improves performance
by a large margin on scenes with reflection and refraction but
also exhibits robustness on methods not specialized in rendering.
Our main contributions are as follows:

� We propose a multi-space NeRF method that automatically
handles mirror-like objects in 360-degree high-fidelity
scene rendering, achieving significant improvements over
the existing representative baselines both quantitatively
and qualitatively.

� We design a lightweight module that can equip most
NeRF-like methods with the ability to model reflection and
refraction.

� We propose a hybrid multi-space scheme for TensoRF and
iNGP, exhibiting the compatibility of our scheme with grid-
based NeRF methods.

� We construct a dataset dedicated to evaluation for the
360-degree high-fidelity rendering of scenes containing
complex reflections and refractions, including 33 synthe-
sized scenes and 7 real captured scenes, with challenging
camera paths.

II. RELATED WORK

Coordinate-based novel view synthesis: NeRF [2] has bridged
the gap between computer vision and computer graphics, and
reveals a promising way to render high-quality photorealistic
scenes with only posed images. The insights and the generaliza-
tion ability of this scheme also facilitate various tasks, i.e., 3D
reconstruction [22], [23], [24], [25], [26], [27], [28], 3D-aware
generation [29], [30], [31], [32], [33], 3D-aware edition [34],
[35], [36], and avatar reconstruction and manipulation [37], [38],
[39], [40]. Researchers have made great efforts to enhance this
scheme. Mip-NeRF [19] enhances the anti-aliasing ability of
NeRF by featuring 3D conical frustum using integrated posi-
tional encoding. [41], [42] adapt this scheme to HDR images.
[3], [4] extend NeRF and its variants to unbounded scenes.
[22], [23], [24], [26], [27] construct the relationship between
the SDF and the density in volumetric rendering of NeRF for
3D reconstruction. There are also many works trying to speed
up the training and inference speed using explicit or hybrid
representations [20], [21], [43], [44], [45], [46], [47].

Glossy materials with high specular have a great influence on
NeRF-like methods. [48] is inspired by precomputation-based
techniques [49] in computer graphics to represent and render
view-dependent specular and reflection, but it fails to handle
mirror-like reflective surfaces because the virtual images cannot
be treated as textures. Guo et al. [16] propose to decompose
reflective surfaces into a transmitted part and reflected part,
which is the most relevant work to ours. However, such de-
composition cannot handle 360-degree views with mirror-like
objects, because the virtual images have no difference from real
objects until the viewpoint moves beyond a certain angle. Zeng et
al. [50] incorporates the ray tracing scheme into NeRF to model
the reflection, but there also lacks views behind the mirrors.

Another line of work similar to ours is multiple neural ra-
diance fields, but they do so for different purposes [30], [45],
[51], [52], [53]. [30] uses object-level neural radiance fields for
3D-aware generation and composition. [45], [51] uses multiple
small MLPs for efficient rendering. [52], [53] uses multiple
object-level neural radiance fields for 3D scene decomposition
and edition.

Commonly used datasets: Researchers have introduced or
constructed many different datasets to facilitate the development
of NeRF-based methods in various tasks. Mildenhall et al.
[2] collect a dataset containing eight rendered sets of posed
images about eight objects separately, and eight real captured
forward-facing scenes with the camera poses and intrinsics
estimated by COLMAP [54]. Nevertheless, these scenes lack
reflection and refraction, which are very common. Wizadwongsa
et al. [17] propose a dataset, namely Shiny, that contains
eight more challenging scenes to test NeRF-like methods on
view-dependent effects, but they are captured in a roughly
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forward-facing manner. Verbin et al. [48] create a dataset of six
glossy objects, namely Shiny Blender, which are rendered under
similar conditions as done in NeRF to test methods in modeling
more complex materials. For unbounded scenes, Barron et al.
[4] construct a dataset consisting of 5 outdoor scenes and 4
indoor scenes, while Zhang et al. [3] adopt Tanks and Temples
(T&T) dataset [55] and the Light Field dataset [56]. Bemana1 et
al. [57] capture a dataset consisting of refractive objects, which
is composed of four scenes with cameras moving in a large
range. Guo et al. [16] collect six forward-facing scenes with
reflective and semi-transparent materials, which is, to date, the
most relevant dataset to ours, but ours is much more challenging.
DTU dataset [58] and BlendedMVS dataset [59] are commonly
used as benchmarks for the evaluation of 3D reconstruction.

III. METHOD

A. Preliminaries: Neural Radiance Fields

Neural Radiance Fields (NeRF) [2] encodes a scene in the
form of continuous volumetric fields into the weights of a
multilayer perceptron (MLP), and adopts the absorption-only
model in the traditional volumetric rendering to synthesize novel
views. The training process only requires a sparse set of posed
images and casts rays r(t) = o + td through the scene, where
o � R3 is the camera center and d � R3 is the view direction,
and the rays can be calculated by intrinsics and poses from the
training data. Given these rays, NeRF samples a set of 3D points
{pi = o + tid} by the distance to the camera ti in the euclidean
space and projects these points to a higher dimensional space
using the following function:

�(p) =
�
sin(p), cos(p), . . ., sin

�
2L�1p

�
, cos

�
2L�1p

��
(1)

where L is a hyperparameter and p is a sampled point.
Given the projected features {�(pi)} and the ray direction d,

the MLP outputs the densities {�i} and colors {ci}, which are
used to estimate the color C(r) of the ray using the quadrature
rule reviewed by Max [60]:

�C(r) =
N�

i=1

Ti(1� exp(��i�i))ci (2)

with Ti = exp(�
�i�1

j=1 �j�j) and �i = ti � ti�1. Since the
equation is differentiable, the model parameters can be opti-
mized directly by Mean Squared Error (MSE) loss:

L =
1
|R|

�

r�R

|| �C(r)� C(r)||2 (3)

where R is a training batch of rays. Besides, NeRF also adopts
a hierarchical sampling strategy to sample more points where
higher weights are accumulated. With these designs, NeRF
achieves state-of-the-art photorealistic results of novel view
synthesis in most cases.

B. Multi-Space Neural Radiance Field

The volumetric rendering equation and the continuous rep-
resentation ability of MLPs do guarantee the success of NeRF-
based methods in novel view synthesis, but as pointed out by

Fig. 2. The virtual image created by the mirror is visible only in a small range
of views, which violates the multi-view consistency.

Fig. 3. The first row is training view examples in the two scenes. In scene A,
there is only a plant in front of a mirror, while in scene B we carefully place
another plant to match the exact position where the virtual image lies. The second
row is test views with rendered depth from the vanilla NeRF trained on the toy
scenes. As demonstrated, NeRF can avoid the trap of treating reflected images
as textures when the ‘virtual image’ satisfies multi-view consistency.

previous works [12], [13], [16], there is also an unignorable prop-
erty hidden in the training process that helps the convergence,
which is the multi-view consistency. However, the multi-view
consistency can be easily violated by any reflective surfaces. An
example is shown in Fig. 2, when looking in front of a mirror
one can observe the reflective virtual image as if there were an
object behind it, but when looking from a side or backward, there
is actually nothing behind the mirror. In practice, this means
there will be completely conflictive training batches violating
the fitting process of MLP.

To experimentally demonstrate the importance of multi-view
consistency and its influence on the conventional NeRF network
structure, We create two 360-degree toy scenes using an open
source software Blender [61], each of which consists of 100
training images and 10 test images, training view examples are
shown in Fig. 3(a) and (b). The only difference between the two
scenes is that we place a mirror-posed real object behind the
mirror in the latter scene, but not in the former one. We train
the vanilla NeRF separately on these toy scenes under the same
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Fig. 4. We visualize composed RGB and depth maps of novel views and the decoded images with the corresponding weights and depth maps of all sub-spaces
from our MS-NeRFB model in Section VI-D. The results show that our method successfully decomposes virtual images into certain sub-spaces.

setting and render some views from the test set as in Fig. 3(c)
and (d), which clearly shows that the vanished virtual image (i.e.,
violation to the multi-view consistency) in some views leads the
model to suboptimal results in reflection-related regions and pro-
duces blur in rendering. Interestingly, the conventional NeRF is
still trying to fulfill the multi-view consistency assumption in the
process. From the depth map in Fig. 3(c), we can easily conclude
that the conventional NeRF treats the viewed virtual image as
a “texture” on the reflective surface, achieving a compromise
between its principle assumption and the conflicts in training
data, although the compromise leads to false understandings
and worse rendering results of the real scenes.

Contrary to the conventional NeRF, inspired by the common
perspective in Physics and Computer Graphics that reflective
light can be viewed as “directly emitted” from its mirror-
symmetric direction, from a possible “virtual source inside the
virtual space in the mirror,” we build our novel multi-space NeRF
approach on the following assumption:

Assumption 1: At the existence of reflection and refraction,
the real euclidean scene space can be decomposed into multi-
ple virtual sub-spaces. Each sub-space satisfies the multi-view
consistency property.

It follows that the composition weights of the sub-spaces
can change according to the spatial location and the view
direction. Thus all sub-space contributes dynamically to the

final render result. In this way, the violation of the multi-view
consistency in real euclidean space when there is a reflective
surface can be overcome by placing the virtual images in cer-
tain sub-spaces only visible from certain views, as shown in
Fig. 4. The depth map shown in Fig. 5 further confirms the
insight that our multi-space module equips the conventional
NeRF with the ability of understanding the possible “virtual
source inside the virtual space in the mirror”, on the contrary,
ordinary NeRF even fails to model complex reflections as
textures.

IV. MULTI-SPACE MODULE

In this section, we revise the neural feature fields in Section
IV-A, then we introduce our MLP-based MS module in Section
IV-B, and we integrate out MLP-based MS module into pure
MLP-based and grid-based NeRF methods to analyze the per-
formance in Section IV-C, finally, we design another hybrid MS
module in Section IV-D.

A. Neural Feature Fields

To implement our multi-space neural radiance fields, the
underlying field must have the following intrinsics: the re-
constructed scene must be 3D consistent, as the subspaces
are independent scenes, and we try to model each subspace
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Fig. 5. (a) render result by MS-NeRFB . (b) visualization of depth maps rendered by MS-NeRFB . (c) render result by NeRF. (d) visualization of depth maps
rendered by NeRF. The visualization from Section VI-D indicates that our MS module understands the light transport at the occurrence of reflections, and the
common parts can also be rendered correctly.

at scene-level; there must be ways to render 2D images and
pixel-level composition maps for each views, because the model
is only supervised by the composed images. Though we can
modify neural radiance fields with an additional channel to
output the composition information, we experimentally verify
that adding additional channel is suboptimal in Section VI-E.
We can also use neural feature fields to encode both RGB maps
and composition maps for rendered views, which is originally
designed for memory saving [30] replaces the output colors ci of
radiance fields by features{fk

i }ofddimension. When rendering,
neural feature fields follow the same 3D points sampling and
volumetric rendering scheme as in Section III-A, except the
rendered map is feature map �F(r) instead of �C(r), then the
color map �C(r) can be decoded from rendered feature map by
a small MLP �:

{F(r)} ��� {C(r)} (4)

and the model is supervised by the Ground-Truth images as in
(3).

Though neural feature fields is capable of encoding both RGB
maps and subspace composition maps for each view, we need to
further validate that the neural feature fields are 3D consistent.
With the development of NeRF-based methods, there are two
main branches of efforts that improve the rendering quality
or rendering speed of NeRF-based methods, and the repre-
sentative methods are Mip-NeRF 360 [4] and iNGP [21]. The
former uses better positional parameterization, bigger MLPs,
and improved regularization to improve rendering quality, and
the latter designs unique hash positional encoding, occupancy
grid-guided sampling strategy, and highly optimized CUDA

TABLE I
RESULTS ON THE REALISTIC SYNTHETIC 360� DATASET, ‘R’ INDICATES

NEURAL RADIANCE FIELDS, AND ‘F’ INDICATES NEURAL FEATURE FIELDS

Fig. 6. The rendered depth and RGB map from neural radiance fields and
neural feature fields based on Mip-NeRF 360.

library to improve the rendering speed. As we aim to design
a unified framework that improves the rendering quality on
reflective surfaces of both NeRF-based methods, we build neural
feature fields based on Mip-NeRF 360 and iNGP separately, and
carry out experiments on the Realistic Synthetic 360� dataset
from NeRF [2]. As shown in Table I and Fig. 6, neural feature
fields are equivalent to neural radiance fields in terms of novel
view synthesis.
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Fig. 7. Our multi-space module only modifies the output and volumetric rendering part of the network. The original NeRF calculates a pair of density � and
radiance c to get the accumulated color. Our output layer produces pairs of densities {�k} and features {fk}, which correspond to multiple parallel feature fields.
Then, we use volumetric rendering to get multiple feature maps. Two simple MLPs, i.e., Decoder MLP and Gate MLP, are utilized to decode RGB maps and
pixel-wise weights from these feature maps.

B. Multi-Space Module With Feature Fields

Based on the analysis in Section IV-A, we propose a compact
Multi-Space module (MS module) using the neural feature field
scheme [30], to sufficiently extract multi-space information
from standard NeRF backbone network structures with only
small computational overheads. Specifically, the MS module
will replace the original output layer of the NeRF backbone.
Below we describe the detailed architecture of our module.

As shown in Fig. 7, our MS module only modifies the
output part of vanilla NeRF. Vanilla NeRF computes single
density �i and radiance ci for each position along a ray casting
through the scene and performs volumetric rendering using (2)
to get the accumulated color. On the contrary, our multi-head
layer replaces the neural radiance field with the neural fea-
ture fields [30]. Specifically, the modified output layer gives
K densities {�k

i } and features {fk
i } of d dimension for each

position along a ray with each pair corresponding to a sub-space,
where K and d are hyperparameters for the total sub-space
number and the feature dimension of the neural feature field,
respectively.

We then integrate features along the ray in each sub-space
to collect K feature maps that encode the color information
and visibility of each sub-space from a certain viewpoint. As
all pixels are calculated the same way, we denote each pixel as
{Fk} for simplicity and describe the operation at the pixel level.
Each pixel {Fk} of the feature maps is calculated using:

�Fk(r) =
N�

i=1

T k
i (1� exp(��k

i �i))fk
i , (5)

where the superscript k indicates the sub-space that the ray casts
through. The k-th density �k

i and feature fk
i correspond to the k-

th sub-space. T k
i = exp(�

�i�1
j=1 �

k
j �j) and �i = ti � ti�1 are

similarly computed as in (2).
Then, {Fk} is decoded by two small MLPs, each with just

one hidden layer. The first is a Decoder MLP that takes {Fk}
as input and outputs RGB vectors. The second is a Gate MLP
that takes {Fk} as input and outputs weights that control the
visibility of certain sub-spaces. Specifically, we use:

{Fk} �D�� {Ck}, {Fk} �G�� {wk}, (6)

where �D represents the Decoder MLP, and �G represents
the Gate MLP. In the end, the MS module applies the softmax
function to {wk} as the color contribution of each subspace to
form the final render results:

�C(r) =
1

�K
i=1 exp(wi)

K�

k=1

exp(wk)Ck. (7)

Equation (7) needs no additional loss terms compared with
the vanilla NeRF method. As a result, the above light-weighted
MS module is able to serve as an enhancement module onto the
conventional NeRF-like backbone networks, and we will show
that our approach achieves significant enhancements in Section
VI-D.

C. Grid-Based Multi-Space NeRF With Feature Fields

Grid-based techniques [21] promote the development of
NeRF-based methods by a huge step, especially in acceleration
fields where grid-based NeRF methods are able to converge to
comparably high quality in just minutes, while pure MLP-based
methods require hours to days of training. These methods follow
the design convention of small MLPs and learnable explicit
parameters organized in 2D/3D grids, where the grids explicitly
encode coordinate-related information, and the MLPs act more
like decoders. Grid-based NeRF methods follow the rendering
equation in (2), except that the positional encoding function
(1) is replaced by a query function Q(V,p) mapping sampled
points {pi} into the values from the corresponding positions
in the grid V � Rdx×dx×dz×dv , where dx, dy, dz represents the
grid resolution along x-, y-, and z-axis while dv represents the
dimension of queried features. As these methods render images
from single radiance fields like previous methods, they also fail
to render high-quality reflection and refraction.

We choose the iNGP [21] implemented with the proposal
estimator in [62] as our baseline and simply integrate our MS
module in Section IV-B into it as multi-space iNGP. We conduct
experiments on the Scene04 with circle camera path from our
synthesized dataset in Section V-B, because this scene contains
relatively complex reflections and simple objects. As shown
in Fig. 8, though our MS module prevents the model from
collapsing, it still struggles to render high-quality reflections.
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Fig. 8. Visual comparison between iNGP with and without our MS module in
Section IV-B.

Fig. 9. We integrate our MLP-based multi-space module with 6 subspaces into
the Mip-NeRF 360 method and scale the size of the NeRF MLP in the model
by the network depth and width; then, we evaluate the performance by PSNR
on the shown scene with the circle camera path.

The results in Table I also show that the Mip-NeRF 360 gains
performance increase from feature fields, while the performance
of iNGP drops when integrated with feature fields, therefore,
we suspect that the performance of our MS module with feature
fields should be related to the MLP capacity of NeRF model.
To validate the above speculation, we carry out experiments on
Scene05 with the circle camera path from our synthesized dataset
in Section V-B, which contains infinite reflections and relatively
simple objects, therefore, the performance improvements are
clearer. We integrate the MS module in Section IV-A with Mip-
NeRF 360 and scale the base MLP size by network depth and
width; the results in Fig. 9 show that bigger MLPs gain more
performance increase from our MS module.

Also, we visualize the RGB maps and the feature maps
visualized by PCA transformation of four sub-spaces rendered
by the multi-space iNGP and multi-space Mip-NeRF 360 in
Fig. 10, which shows that bigger MLPs with our MS module
can reconstruct cleaner sub-spaces, while iNGP is designed
with small MLPs and directly integratd with MS module from
Section IV-B can only reconstruct suboptimal subspaces.

D. Hybrid Multi-Space Module

Though MS module with feature fields exhibit good perfor-
mance with MLP-based NeRF methods, it is not compatible

Fig. 10. Visualization of the sub-spaces rendered from Mip-NeRF 360 and
iNGP with our MS module in Section IV-B. The left image is the composed
image, and the right ones are sub-space RGB maps and sub-space feature maps
with PCA transformation.

with grid-based methods. Considering the representation abil-
ity of small MLPs, we comprise to model the sub-spaces in
grid-based methods using neural radiance fields as shown in
Fig. 11. Given sampled points {pi} along the ray and the explicit
grid parameters V, we modify the output layer to map each
features vector queried by Q(V,p) and the ray direction d to K
densities {�k

i } and colors {ck
i }, which model multiple radiance

fields instead of multiple feature fields, where K represent the
total number of sub-spaces. Then, a multi-space integration in
(5) is performed, except that we integrate K colors {ck

i } instead
of features {fk

i }, to form K color maps {Ck}.
We decompose the multi-space composition information from

the NeRF model, and compress it into a small MLP, as in scenes
with reflections and refractions, the visibility of virtual images
is only related to 3D positions and view directions. Specifically,
we design another branch with a small pure MLP network,
which maps each 3D positions {�(pi)}, where �(. . .) is the
positional encoding from (1), and view directions d to features
{fi} of d dimension. Note that we record one feature vector
for each position due to the model capacity. Then we put the
features {fi} into each sub-space along the rays, and perform
volumetric rendering using the features {fi} along with each of
the K densities {�k

i } from the multiple radiance fields branch
to form K feature maps {Fk}, as in (5). Finally, we decode the
pixel-wise composition weight map from {Fk} following (6),
and we compose the rendered results using the K color maps
{Ck} from NeRF branch and the decoded weight map {wk} as
in (7).

V. DATASET

A. Existing Datasets

We briefly revisit the commonly used or most relevant datasets
to our task and list their properties in Table II. With these
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Fig. 11. The illustration of the proposed hybrid MS module. Considering the architecture of grid-based methods, we decompose the multi-space gate information
from the radiance fields branch and use another small branch to model multiple feature fields, from which we decode the gate information. Along with the multiple
radiance fields, we perform weighted sum to get the final rendering image.

TABLE II
PROPERTIES OF A COMMONLY USED DATASET FOR NERF-BASED METHODS

well-designed datasets, NeRF-based methods have achieved
great improvements in many applications under various settings,
such as novel view synthesis in unbounded scenes and 3D
reconstruction. However, most existing dataset fails to cover
scenes containing complex light paths with the camera moving
360-degree around, e.g., a glass of water in front of a mirror,
which is very common in our daily life. [16] propose the RFFR
(Real Forward-Facing with Reflections) dataset, which contains
6 forward-facing scenes with reflective objects, such as trans-
parent glass and mirrors. However, views behind the reflective
objects cannot be evaluated, which is crucial for understanding
reflections. [57] propose a dataset containing 4 scenes, where
cameras move around the central refractive objects with a large
view range up to 360-degree. However, it is a nearly object-level
dataset, and the refractive is rather simple.

B. Our Proposed Dataset

As summarized in Section V-A, there lacks a 360-degree
dataset consisting of complex reflection and refraction to facil-
itate the related research. Therefore, we collect a 360-degree
dataset comprising 33 synthetic scenes and 7 real captured
scenes.

For our synthesized part shown in Fig. 12(a), we use an open
source software Blender [61], and design our scenes with 3D
models from BlenderKit, a community for sharing 3D models.
As our dataset consists of complete scenes instead of single
objects, we design three kinds of camera paths. The simplest one
is a circle path, where we fix the height of our camera position
with the camera looking at the center of the scene and moving the
camera around a circle to render the whole scene. We render this
path for all our scenes, where we uniformly sample 120 points
along the circle and randomly choose 100 images for the training
set, 10 for the validation set, and 10 for the test set. Besides, we
design a 360-degree spiral path, where cameras gradually spiral
up from the equator to the pole, looking at the center of the scene.
To further evaluate the robustness of future related methods, we
design a novel mirror-passing-through path, where the cameras
move through the mirrors in the scenes back and forth. We select
5 simple scenes and 5 difficult scenes from our dataset to render
the above two paths, where we uniformly sample 300 points
along the path and randomly choose 100 images as the training
set and 200 as the test set. We visualize the three kinds of camera
paths in Fig. 13.

The constructed dataset features a wide variety of scenes
containing reflective and refractive objects. We include a variety
of complexity of light paths, controlled by the number and
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Fig. 12. Demo scenes of our datasets (more in the supplementary). Our dataset
exhibits diversities of reflection and refraction, which can serve as a benchmark
for validating the ability to synthesize novel views with complex light paths.

Fig. 13. Visualization of our designed camera paths. Blue cameras represent
the circle path, green cameras belong to the mirror-passing-through path, and
orange cameras represent the spiral path.

the layout of the mirror(s) in the scene, where the number
of mirrors ranges from 1 up to tens of small pieces. Note
that even a scene in our dataset with only one mirror is more
challenging than RFFR [16], as our camera moves from the
front to the back of the mirror(s). Besides, we also construct
rooms with mirror walls that can essentially be treated as un-
bounded scenes, where we add mirrors in the center of the
room and create unbounded virtual images. We further build
challenging scenes, including a combination of reflection and
refraction. As shown in Fig. 14, our dataset exhibits much more
challenging properties. Furthermore, we render instance-level
masks for each reflective and refractive object in our synthesized
scenes.

Fig. 14. We quantitatively compare our dataset with two most related datasets,
i.e., RFFR [16] and EikonalFields [57]. We statistically count the number of
mirrors and transparent objects, which are directly related to reflection and
refraction, respectively. Furthermore, we quantify the complexity of light paths
by the maximum number of reflections occurring in the scene. Note that in
our scenes with more than two mirrors, there must exist two facing mirrors;
therefore, the maximum reflections jump from 2 to infinite.

We also include 7 captured real scenes with complex light
conditions shown in Fig. 12(b). We construct our scenes using
two mirrors, one glass ball with a smooth surface, one glass ball
with a diamond-like surface, a few toys, and a few books. We
capture pictures randomly with 360-degree viewpoints.

VI. EXPERIMENTS

A. Baselines, Hyperparameters, and Benchmarks

To thoroughly evaluate the superiority and robustness and
demonstrate the potential of our method, we conduct various
experiments based on different datasets with different base-
lines and our modules of different scales. We select 5 repre-
sentative NeRF-based methods and categorize them into two
parts: a) MLP-based NeRF methods, including NeRF [2], Mip-
NeRF [19] and Mip-NeRF 360 [4]; b) grid-based NeRF method,
including TensoRF [20] and iNGP [21].

MLP-based NeRF methods contain representative methods
for novel view synthesis, which typically encode the under-
lying radiance fields into the weights of MLP and aim at
rendering high-quality images. We conduct experiments with
our MLP-based MS module in Section IV-B based on these
methods on our dataset to demonstrate the superiority of our
scheme. Grid-based NeRF methods feature hybrid represen-
tation, specifically combinations of small MLP and discrete
learnable/fixed parameters organized in 3D/2D grids, which
heavily reduces the parameters to be optimized in each iteration
and converge to relatively high-quality rendering in a very
short time. TensoRF and iNGP construct the networks using
learnable parameters in 2D and 3D grids respectively with
small MLPs; therefore, we integrate our hybrid MS module
described in Section IV-D into them to validate our methods. We
conduct various experiments with these baselines on different
datasets to demonstrate the superiority and generalization of our
scheme.
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