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Abstract—Recently, 3D reconstruction methods based on the
neural radiance fields have demonstrated remarkable generative
performance. However, these methods frequently tend to be
resource hungry and are challenging to regulate large low-
textured regions in typical indoor scenes. In this work, we
analyze and integrate inherent semantic geometry cues for self-
supervised 3D reconstruction training via a unified framework of
volume rendering and signed distance implicit representations. In
contrast to previous neural implicit methods, we simultaneously
incorporate the pixel-aligned features and image patches for
multi-view consistency, thereby enabling us to depict a large
indoor scene from challenging scenarios with rich visual details
and large smooth backgrounds. Extensive experiments and com-
parisons demonstrate that our proposed method has achieved
state-of-the-art results by a large margin in various tasks (e.g.
actual surface reconstruction, novel view synthesis, and learning
a universal scheme in occlusion or distorted regions).

Index Terms—Indoor reconstruction, implicit neural render-
ing, self-supervised guidance

I. INTRODUCTION

Neural rendering techniques on 3D surface reconstruction
are being hotly pursued and have made impressive progress
in virtual reality, augmented reality, and scene animation. Re-
cently, Neural Radiance Fields (NeRF) [1] and its variants [2]–
[6] have achieved unprecedented view synthesizing fidelity
by designing a compact neural volume representation. These
methods focus on rendering photo-realistic images in a view-
consistent manner and it is challenging to extract a zero-
crossing area (i.e. the surface). Noticing that signed distance
function (SDF) serves to recover subtle geometry details in
a zero level set manner, neural implicit representation [7]–
[10] have been proposed to avoid surface ambiguity caused
by the uniform density accumulation. However, these methods
assume that only the intersection of the ray near the surface
votes for the appearance calculation and ignore the background
estimation. Later, Wang et al. combined radiance field repre-
sentation and neural SDF representation and proposed a new
paradigm (i.e. NeuS [11]) to extract high-fidelity surfaces. This
implicit SDF rendering scheme can be a dramatic enhancement
in learning accurate surface intersections from RGB scans and
corresponding object masks. However, reconstructing large
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cluttered indoor scenes with texture-less regions can be easily
stuck in local optima and it remains a challenging task.

To address this issue, [12]–[14] present a new benchmark
with Manhattan-world constraint or additional normal priors to
enforce the training process. By incorporating monocular ge-
ometric cues, these methods recover relatively smooth bound-
aries between accurate 3D objects and free space. However,
heavily relying on a well-designed layout manner and carefully
pre-trained priors as supervision severely limits the portability
of user engagement from unseen datasets.

In our approach, we conjecture that neural implicit repre-
sentation will achieve better with fine-grained correspondence
from semantic segmentation corpora. To this end, we assemble
the homogeneous pixels counting up to 50 which implies
texture-less regions, and leverage pixel gradient examination
in cross-entropy loss to learn a hybrid guideline between the
predicted semantic segmentation item and the depth change in-
formation. A comprehensive set of qualitative and quantitative
experiments conducted on room-scale datasets ScanNet [15]
and Replica [16] show that our method achieves high fidelity
results without fine-tuning compared to state-of-the-art meth-
ods.

To summarize, the main contributions of this paper are:
• We introduce a novel self-supervised framework to ef-

fectively handle correlation patterns between depth maps
and semantic labels in the task of room-scale 3D recon-
struction given only RGB-D scans.

• We design a depth-check module to prevent overwhelm-
ing the training process, especially in challenging scenar-
ios with radical depth changes.

II. RELATED WORK

A. Classical Multi-view Stereo Methods.

Some traditional multi-view stereo (MVS) methods estimate
multi-plane images [17]–[20] and apply depth fusion [21] in
a point cloud to reconstruct the scene. The key point of this
feature matching procedure is to build correspondence [22]
in a multi-view consistency manner. Voxel-based represen-
tation [23] is also a trend to extend MVS in exploiting
photometric consistency. MVS algorithms perfectly adapt to
inhomogeneous sampling patch and require low memory to



Fig. 1: Overview of our optimization pipeline. Given RGB-D scans, we sample a batch of rays and decouples the semantic
information with depth-check in two separate side branch. The former branch fits the implicit Volume Rendering network with
high-level semantic annotations extracted from the later category correspondence encoder, enabling color prediction via volume
rendering (Green MLP blocks), semantic segmentation (Bittersweet MLP blocks) and surface reconstruction (Dandelion MLP
blocks).

storage cost features. However, these methods may predict
an infinity density of objects in case of trivial solutions
due to their visual inconsistency nature in volume density
formulation.

B. Neural Implicit Scene Reconstruction.

Recently, the seminal work NeRF [1] explores multi-layer
perceptrons (MLPs) to regress 3D volumetric densities and
colors with sinusoidal functions encoding. Neural rendering is
suitable to predict the color map for novel views without any
preliminary mask prefetching. However, without depth con-
straints, it’s hard to resemble an accurate topological surface
distribution, especially in real-world indoor scenes proposed of
large texture-less regions. In follow-up work, NeRF has been
extended with depth supervised [24]–[26] from smarter sam-
pling sparse points by running structure-from-motion (SFM). It
implies that reasons to predict closest-surface depth outweigh
reasons to accumulate ordinary 3D points. Despite decent
synthesis performance and flexible capture requirements, such
an approach inevitably constructs imprecise depth completion
when minimizing the KL divergence with estimated camera
poses and intrinsics from poor COLMAP optimization.

Instead of predicting the ray distribution and depth un-
certainty, we leverage implicit density accumulation strategy
and L2 losses to achieve robust reconstruction, which can
also avoid ambiguities in the presence of rich texture areas
and generate visually-appealing images. Inspired by [27], we
introduce a novel edge-aware smooth term that only small
disparity semantic regions will contribute to the local density

field, making it easier to perform density checks on top of
volume rendering.

C. Prior Guided 3D Scene Optimization.

There have been many prior guided works that have
emerged as a promising trend by acquiring geometry or ap-
pearance cues. [28], [29] predict dense 2D semantic labels and
fuse them to 3D scene, which enables more effective learning
for 3D representation. Manhattan-SDF [13] jointly optimize
the scene appearance and geometry based on Manhattan-world
assumption. Although achieving accurate parallel or orthog-
onal constraints to indoor texture-less regions, the process
is not scalable for fitting small objects because of specified
three semantic predictions (e.g. floor, wall, or the background
regions). Instead of naive brute-force training, NeuRIS [14]
incorporate estimated normal prior into geometry modeling
and output an appealing 3D geometry. However, without actual
depth range measurements, NeuRIS is tough to determine
whether the sampled points along the rays are near the surface
or at a large distance from the surface, thereby reasoning about
an over-smooth object surface of tiny objects. Besides, due
to the heavy burden of carefully training normal clues, this
standalone method is not capable of on-site image captures.

To address the distortion and incompleteness problems, we
leverage unsupervised semantic constraints in the early train-
ing stage and depth-check module in later surface completion.



III. METHODOLOGY

A. Overview.

In this paper, we propose an end-to-end framework guided
by unsupervised semantic constraints while only given com-
mercial RGB-D Kinect camera captures with corresponding
intrinsic and camera poses. Though the pixel’s color is related
to the surface geometry, performing reconstruction with the
same backbone and adaptive prediction heads makes it vul-
nerable to creating accurate level sets. Thus we first sample
rays and map the object surface into a zero-level set. After
identifying suitable geometry in coarse volume rendering, we
utilize depth priors for precise measurement of the distances
to objects and perform STEGO predictor [30] to get segmen-
tation results that serve as supervision in a principled unified
formulation for relatively smooth layout(floor, desk, sofa, etc.)
generation. Fig 1 demonstrates an overview of our proposed
approach.
Implicit Volume Rendering. Following NeRF, given a train-
ing set of indoor images, our model samples M points p =
{pi = o + vdi|i = 1, ...,M} from camera center o along
the view direction v. Then sampled points are mapped into
signed distance s(p), geometry features g(p) and surface
gradient ∇(s(p)) through a coarse MLP network fθd : R3 →
R× RN × R3 which can be expressed as:

(s(p), g(p),∇(s(p))) = fθd(γ(p)), (1)

After coarse geometry prediction, signed distance s(p) is
invoked to model the density σ(p) with learnable parameter
β in a more tractable transformation.

σ(p) =


1

2β
exp (

s(p)

β
) if s(p) ≤ 0

1

β
− 1

2β
exp (

−s(p)

β
) if s(p) > 0.

(2)

Akin to conditional volume rendering techniques, we denote
the accumulated alpha weights W as follows:

W =

n∑
i=1

Tiαi, (3)

where Ti = exp(−
∑i−1

j=1 σjδj) denotes the accumulated
transmittance along the ray, αi = 1 − exp (−σiδi) is the
discrete alpha value at point pi where δi is the distance
between neighboring sampled points.

Then we reason about color c and categorical semantic s
through a similarly designed fine MLP network fθ{c,s} : R3×
R3 × R3 × RN → R3 which can be formalised as:

fθ{c,s}(γ(p)) = (p,v, g(p),∇(s(p))). (4)

The color map Ĉ and semantic map Ŝ along sampled rays
are approximated as a weighted sum of every query point:

{Ĉ, Ŝ} =< W, fθ{c,s} >, (5)

where < ., . > means Frobenius inner product.

B. Semantic Constraints for Scene Representation.

Unlike the existing semantic guided work [13], we observe
that in addition to background geometry (e.g. wall, floor,
etc.), the horizontal planar like a large table in the council
chamber or modern loveseat sofa contributes a lot to relative
position among surrounding objects. An accurate 2D object
mask is tough to generate in a cluttered scene, so we tame
an encoder with five categories {Oi ⊂ R3|i = 1, . . . , 5}
inside the scene to depict the disparity between semantic map
prediction and semantic segmentation via maximum likelihood
data clustering:

min

5∑
i=1

wiyi(log
exp(ŜOi,yi

)

exp(
∑5

i=1 ŜOi,yi
)
), (6)

where wi is area-imbalanced weight and yi is the ground truth
patch segmentation prediction, resolving ambiguities during
the early coarse layout searching process.

Noticing that among homogeneous regions there exist an
abrupt depth gap, which will definitely induce a very large
misguidance. These depth uncertainties, also known as edge
points, have larger gradient values in the image, while areas
with continuous depth have smaller gradient values. Inspired
but different from edge-aware smoothness item [31], we
rearrange the semantic loss function as:

Ls =

5∑
i=1

wiyi(log
exp(ŜOi,yi

e|∇I∗
t |)

exp(
∑5

i=1 ŜOi,yi
e|∇I∗

t |)
), (7)

where I∗t is sampled color input and we regress semantic
constraints in the plausible areas where pixel gradient ∇I∗t is
below the threshold ϵ. For edge points, the pixel gradient will
rush into an extreme value, which should not be taken into
consideration and have a better constraint on the predicted
depth map.

C. Optimization.

While enforcing color integration with a density field from
sampled R 2D pixels, L1-norm photometric loss is defined as:

Lc =
∑
r∈R

∥Ĉ(r)− C(r)∥1. (8)

Reconstructing 3D geometry from only 2D color input is
an ill-posed problem, especially in poorly textured areas. To
supervise the complex surface distance relationship, we utilize
L2-norm depth loss to terminate viewing rays at the opaque
object:

Ld =
∑
r∈R

∥< W, d > −D̄(r)∥2, (9)

where < W, d > is the rendered depth values, D̄(r) is the
real depth from the depth sensor.

Due to the partially reflective or occluded conditions in
volume rendering, the photometric loss may provide error
clues in the region of similar appearance. Eikonal loss [34]



Method ScanNet Replica
Acc↓ Comp↓ Prec↑ Recall↑ F-score↑ Acc↓ Comp↓ Prec↑ Recall↑ F-score↑

COLMAP [32] 0.035 0.167 0.760 0.403 0.527 0.098 0.144 0.604 0.485 0.538
NeRF [1] 0.701 0.182 0.153 0.295 0.201 0.573 0.421 0.085 0.166 0.112
UNISURF [33] 0.486 0.172 0.195 0.338 0.247 0.399 0.386 0.298 0.335 0.315
NeuS [11] 0.107 0.126 0.524 0.465 0.493 0.312 0.167 0.406 0.437 0.421
VolSDF [10] 0.234 0.131 0.317 0.442 0.369 0.227 0.103 0.489 0.546 0.516
M-SDF [13] 0.049 0.060 0.747 0.643 0.691 0.112 0.096 0.588 0.602 0.595
Ours*(w/o Ls) 0.085 0.102 0.557 0.502 0.528 0.187 0.126 0.521 0.535 0.528
Ours*(w/o Ld) 0.117 0.094 0.492 0.538 0.514 0.085 0.072 0.622 0.637 0.629
Ours 0.054 0.037 0.736 0.764 0.758 0.042 0.064 0.729 0.665 0.695

TABLE I: Quantitative comparisons over room-scale scenes of state-of-the-art methods on ScanNet and Replica.The
best, second and third scores are highlighted in red, blue and teal, respectively. Following [13], we select F-score as the most
representative metric for 3D surface reconstruction.

TABLE II: Quality metrics for novel view synthesis on Scannet
datasets. Best results are highlighted.

Model Metrics
PSNR↑ / SSIM↑ / LPIPS↓

NeRF 28.29 / 0.922 / 0.119
NeuS 27.15 / 0.824 / 0.146

Ours*(full model) 28.44 / 0.933 / 0.067

is utilized to regularize the sampled points, thereby enabling
the network to generate a clear boundary condition:

Leik =
∑
p∈P

(∥∇fθ(p)∥2 − 1)2, (10)

where P denote uniformly distributed points in the bounding
box.

Leaving uncontrollable 3D surface normal cues, we take
an initial step by leveraging a surface normal suppression
component, which means the set of near-surface points should
ensure spatial coherence and smooth consistency:

Lreg =
∑
p∈P

(∥∇fθ(p)−∇fθ(p+ ϵ)∥2)
2, (11)

where ϵ is the perturbation near the predicted surface.
In summary, the overall training loss L is defined as a

weighted sum of the following six loss terms.

L = Lc + λ1Ld + λ2Ls + λ3Lreg + λ4Leik, (12)

where λ1, λ2, λ3, λ4 are the trade-off weight hyperparameters.

IV. EXPERIMENTS
A. Datasets.

In our experiments, we investigate our network on two
room-level datasets (e.g. ScanNet(v2) [15] and Replica [16]).
ScanNet provides more than 1500 room-scale scenes with
corresponding high-quality reconstructed mesh. It takes about
1.2T to download the whole datasets indicating that it is com-
putationally prohibitive for training all scenarios. We select 5
scenes of different categories for testing. Similarly, we perform
our method on 6 scenes with high resolution and fine-grained
surfaces from Replica. According to the video length of each
scene, 100∼700 sampled views with accompanying camera
parameters are applied to the network training.

B. Implementation Details.

Building on NeuS [11], our method is implemented in
Pytorch. The SDF backbone network and appearance (seman-
tic) module are modeled by an 8-layer MLP with a Softplus
activation function and a 4-layer MLP with a Relu activation
respectively. We utilize the ADAM as the optimizer with a
learning rate of 2e-4 and randomly sample a batch size of 512
rays. Based on 64 query points in the coarse volume, we add
extra 64 fine surface-guided sampled points which generate a
reasonable search range. The first training process takes 100k
iterations with λ2 initialized to 1.0, while decay over training
to 0.1 to refrain from radiance ambiguity problem. Our model
can be trained for about 2.5 hours using a single GeForce RTX
3090 GPU with 6GB GPU memory.

C. Quantitative Results.

As shown in Table I, our method outperforms existing
state-of-the-art baselines to a large extent. More precisely, we
improve over the previous SOTA method Manhattan-SDF (ab-
breviated as M-SDF) by an average margin of 0.067 in F-score,
which means higher accuracy and better completeness. For
the metric Acc. (Accuracy), COLMAP and M-SDF achieve
slightly higher results than our approach due to inconsistency
elimination process and blindness for recovering fine-grained
object regions.

Further, we also conduct ablation studies on the contri-
butions of the two main components(e.g. depth constraints
and semantic constraints). In contrast to training the neural
implicit network without these two items, our method is able
to optimize the depth prediction via semantic segmentation
constraints which promise harmonization between depicting
the space distribution and recovering subtle color details.

D. Qualitative Results.

Fig 2 demonstrates qualitative geometry reconstructed by
our approach and other rendering-based methods. Note that
NeRF lacks sufficient constraint on the surface and produces
noisy meshes. Neus utilizes SDF representation, which can
reconstruct a rough shape (see bed and single sofa). SOTA
method M-SDF integrates Manhattan-world constraint to con-
strain smoothness in weak textures regions. Compared with
the ground truth, our approach successfully reconstructs subtle



Fig. 2: Visual comparisons on rendered meshes. We compare our model with typical learning-based methods NeRF, Neus,
M-SDF. NeRF and Neus tend to eliminate polygon parts and produce redundant results. M-SDF achieves smooth reconstruction
in planar regions but fails to reconstruct fine texture details. In contrast, our method is capable of maintaining high completeness
and accuracy.

texture details such as bed sheets in a bedroom scene and
laptops jumbled on the worktable.

(a) NeRF

(c) Ours

(b) NeuS

(d) GT
Fig. 3: Qualitative comparison for novel view synthesis
task on the Scannet dataset. Our method is well designed
to handle geometry dissimilarity in NeRF and image content
degradation in Neus.
E. Novel View Synthesis Results.

We also conduct an in-depth analysis of novel view syn-
thesis. To demonstrate the robustness of the networks, 6 long-
distance views with rich-colored furniture are set over 5 test
scenes. Fig 3 demonstrates a rendered test frame from a

randomly selected camera pose. NeRF is specifically designed
for novel view synthesis and only utilizes a color constraint
which inevitably generalizes discretization artifacts and mis-
interpretation of the geometry. In contrast, NeuS integrate
the implicit volumetric SDF into the radiance field. Though
surface rendering is guaranteed, we can observe that rendering
images from NeuS lack high-frequency details due to the dis-
persion of training goals. Thus, our full model gathers category
information from partitioning clustering which helps alleviate
the radiance ambiguity issue and sufficiently constrain the
color degeneration.

As shown in Table 2, our method with full model outper-
forms the reconstruction method NeuS by a large margin for
over 1dB. Even in comparison with synthesizing method
NeRF, our approach also achieve competitive results, espe-
cially in the perceptual distance (e.g. LPIPS).

V. CONCLUSIONS
In this work, we propose a room-scale scene reconstruction

method using a self-supervised implicit neural network. We
follow the protocol of previous prior-guided methods but
distinguish it from theirs by acquiring deep features in an
unsupervised manner which ensures flexibility of training and
surface completeness in case of abrupt depth changes with
RGB-D inputs. Our method yields a significant improvement
in the task of surface extraction and novel view synthesis on
both the Scannet and Replica datasets. In future work, we will
apply key point supervision into our model for meticulous
training of neural implicit surfaces.
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