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Abstract
In real-world unboundedoutdoor sceneswith cars, there are various specular reflections causedby the surrounding environment
appearing on the reflective surfaces of cars. Background regions of unbounded scenes encode inherent ambiguity of rendering,
and specular reflections on cars violates themulti-view consistency.NeRF++ struggles in these scenes because of the enormous
ambiguity. To deal with the challenges of rendering unbounded scenes with cars, we present a novel module to strengthen the
capability of the basic model in this task. We propose to learn the positional bias between sampled points along a camera ray
and target points along the incident light by multi-layer perceptrons to reconstitute the input points and view direction with
regularization constraints for physical rendering. Considering the variety of materials and textures in unbounded scenes, we
implicitly separate learned foreground colors into two components, diffuse and specular colors, to acquire smooth results.
Our module improves basic models by 2.5% on average SSIM in our extensive experiments, produces more photo-realistic
novel views of real-world unbounded scenes than other compared methods, and achieves the physical color editing of cars.

Keywords Unbounded scenes · Specular reflections · Positional bias · Regularization

1 Introduction

View synthesis is a fundamental and challenging task in com-
puter vision and graphics. It requires consumer cameras to
capture sparse views of a scene and generates photo-realistic
images from a free viewpoint. This makes view synthesis
able to provide realistic navigation in the metaverse and pro-
vide more reliable data augmentation for deep models of
autonomous driving.

Neural radiance field (NeRF) [10] has become a popular
view synthesis technique that adopts an implicit volumetric
function to represent a scene. This function is parameterized
by fully connected networks that map spatial points x sam-
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pled along camera rays and the view direction to the volume
density and color. This approach produces promising results
of realistic view synthesis with varying resolutions. How-
ever, NeRF struggles in unbounded scenes, where images
are captured at free viewpoints, and the bounds of each view
are various and unpredictable. The content of unbounded
scenes may appear at an arbitrary distance. This inherent
ambiguity causes the performance of NeRF in novel views
of unbounded scenes to degrade dramatically. NeRF++ [32]
tackles this issue and proposes an inverted sphere param-
eterization to extend NeRF in unbounded scenes. It splits
an unbounded scene into two components: foreground and
background. Then, it uses two neural networks tomodel each
component and combine them to be the rendered image.
NeuS [26] adopts the scheme of NeRF++ to deal with the
background of scenes and construct effectiveweights for ren-
dering the foreground.

Although NeRF++ handles the inherent ambiguity of
unbounded scenes well, it is still limited by other ambigui-
ties caused by specific objects which violates the multi-view
consistency. In this paper, we focus on more challenging
unbounded scenes where cars exist. As Figs. 1 and 2 show,
the surface of a car is composed of highly reflective materi-
als and encodes apparent specular reflections (e.g., trees and
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clouds) from the surrounding environment. Specular reflec-
tions on the same region of a car present different contents
in different views according to the Fresnel effect. This issue
prevents NeRF-basedmodels from interpolating the accurate
color of cars at novel viewpoints.

Recent Phong-based methods [4, 21, 24, 34] introduce the
bidirectional reflectance function (BRDF) [7, 8] to address
objects with reflective surfaces. These methods trace the
incident light with normal and use perfect object masks or
synthetic objects without complex backgrounds to evaluate
their performance. Ref-NeRF [24] adopts the gradient of the
volume density [4, 21] in reference to spatial locations as the
ground-truth normal of scenes. However, when putting cars
into real-world unbounded scenes, the gradient of the volume

density occurs massive errors and noise as shown in Fig. 2a.
A small noise of normal causes a large distance deviation of
source objects which produce the content of specular reflec-
tions in the background. So, this issue causesmore ambiguity
in our task.

Phong-based methods consider that the incident light path
is the optimal solution for tackling the ambiguity from spec-
ular reflections. Based on the above observations, it is hard
to trace the actual incident light directly in our task. Thus,
we propose to use neural networks to find this solution with-
out the surface normal. As Fig. 2b shows, two incident lights
emitted from objects in the background are captured at two
viewpoints. We consider the positional bias (e.g., �p and
�p

′
) between the target point along the incident light and a

Fig. 1 We propose a novel module to improve the performance of basic models (e.g., NeuS [26] and NeRF++ [32]) for rendering unbounded scenes
with cars. Our module is integrated into basic models and preserves fine details of specular reflections on the car

Fig. 2 a Phong-based methods rely on the quality of the normal, which
is estimated from the gradient of the volume density and degrades in
unbounded scenes with cars. Our method is built on the positional bias
instead of the normal and generates more accurate result than the SOTA

phong-basedmethod ( [24]).b Illustration of the positional bias.Wepro-
pose to implicitly learn the positional bias (e.g., �p and �p

′
) between

a ray and the target incident light path for retrieving points along the
incident light path

123



Rendering real-world unbounded scenes...

point sampled along a camera ray. Each point along a camera
ray related to reflection can bemapped to the incident light by
a positional bias at each viewpoint. Inspired by deformable
NeRF-based methods [11, 13, 27], we propose to retrieve the
positional bias from sampled points along rays by neural net-
works. Specifically, we reconstitute these points by adding
their 3D positions with the learned positional bias.

To improve the efficiency of networks for retrieving the
positional bias, we design a searching space with a novel
regularizer. To ensure reconstituted points from a ray along
the same incident light, we propose a novel regularization
term to adjust the distribution of reconstituted points. More-
over, inspired by Ref-NeRF [24], we separate the learned
color into two components: diffuse and specular, to acquire
smooth results in the foreground because of variousmaterials
and textures in it. Based on these novel schemes, we packed
them as a novel module. We integrate it into two relatively
basic models (NeuS and NeRF++). Our extensive experi-
ments demonstrate that our module can produce meaningful
performance gain of basic models in unbounded scenes with
cars and be generalized to other reflective objects. Particu-
larly, our module faithfully separates diffuse and specular
colors and achieves the physical color editing of cars in real-
world unbounded scenes.

To summarize, our main contributions are:

1. We design a novel module to strengthen the capability of
NeRF-based models in unbounded scenes with cars, by
learning the positional bias from the sampled points along
rays.

2. We propose a regularizer tomake neural networks retrieve
the positional bias efficiently and a regularization term to
make reconstituted points distributed along the target light
path for physical rendering.

3. Our module facilitates two basic models rendering more
accurate novel views in unbounded scenes with reflective
objects.

2 Related works

2.1 Reflective objects rendering

Reflective objects are ubiquitous in real-world scenes. How-
ever, they are hard to be rendered correctly by a renderer
without accurate ray-tracing. Synthesizing novel views in
scenes with reflections is a challenging task. Image-based
rendering approaches [5, 6, 14, 20, 25, 29] take captured
images as the input and tackle this task through careful pre-
processing and postprocessing. They conduct the reflection
decomposition of each image. These methods need care-
ful preprocessing and postprocessing and rely on additional
prior information in well-bounded scenes. Our module is

only supervised by the captured images and focuses on more
challenging unbounded scenes. Eikonal fields [3] focus on
the refractive objects which mainly contain the refracted
light with a curve path. Our work is proposed to model the
reflected light on the car surface with a straight line path.
Recent inverse rendering methods [4, 21, 28, 31, 34, 35] are
based on BRDF. They recover the reflectance of an object
with simpleBRDFand local illumination.These assumptions
are ill-suited in our task because of the complex environ-
ment. NeRS [31] proposes to recover the shape and texture
of an object from a sphere template by introducing the Phong
model [12]with perfect objectmasks.Ref-NeRF [24] designs
a parameterization of the view direction to render sceneswith
specular reflections. Our module handles transparent objects
well and improves the rendering quality of basic models in
unbounded scenes.

2.2 Unbounded scenes rendering

In unbounded scenes, images are captured by a free-moving
camera, and objects exist at any distance from the camera.
Learning-based IBR algorithms [16–18] has also been suc-
cessfully applied in rendering unbounded scenes. However,
they suffer from the 3D reconstruction quality of COLMAP
[19], which is not stable in unbounded scenes. NeRF++ [32]
splits unbounded scenes into foreground and background and
uses two neural networks to model each part. Mip-NeRF 360
[2] also designs a scene parameterization like NeRF++ for
Mip-NeRF [1] with large parameters; the key idea of it is the
online distillation. In contrast with these methods, our mod-
ule is proposed to help basic NeRF-based models tackle the
ambiguity caused by cars in unbounded scenes rather than
the inherent ambiguity of unbounded scenes.

3 Method

Given a set of input images and camera parameters of each
view,we aim to render photo-realistic unbounded sceneswith
cars in free views. We design a novel module to achieve our
goal and integrate our module into NeuS [26] and NeRF++
[32] separately to evaluate its effectiveness.

Unbounded scenes with cars encode the ambiguity from
the background and specular reflections on cars.We focus on
the foreground and propose to learn the positional bias for
rendering specular reflections physically. An overview of our
framework is shown in Fig. 3, which consists of two parts: the
foreground region and the background region. Each part pro-
duces a color image of the corresponding region of a view.
In this paper, we concentrate on the ambiguity caused by
specular reflections on cars, i.e., the foreground region. The
parameterization scheme by splitting foreground and back-
ground regions follows NeRF++ [32]. For the background
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Fig. 3 An overview of our framework. In our work, an unbounded scene is decomposed into two parts: foreground and background. Our method
focuses on the foreground part and consists of three parts: positional bias field (Sect. 3.2), regularization (Sect. 3.3) and rendering (Sect. 3.4)

region, we adopt the pipeline of NeRF [10] to generate the
rendered background image Cb. More importantly, we pro-
pose several schemes to help basic models tackle this task.
Specifically, we extract spatial points x and the view direc-
tion d of rays from camera parameters at first. x is also the
input of the positional bias field we proposed to reconstitute
points and the view direction with a novel regularizer. The
output points x

′
and view direction d

′
are fed into two MLPs

to implicitly predict specular cfs and diffuse cfd color val-
ues, which then summed as the learned foreground color c

′
f .

Then, we feed x
′
and d

′
into a MLP Fwf to acquire densities,

then estimate weightsw f of rendering the foreground image.
We can acquire the rendered foreground image Cf from w f

and c
′
f by a weighted summation. Finally, the rendered fore-

ground and background images are added to be supervised
by the captured RGB image.

3.1 Preliminaries

As described by NeRF ( [10]), a ray r extracted from camera
parameters can be presented as:

r = c + td. (1)

where c is the camera center,d is the viewdirection and t is the
depth along this ray which sampled as spatial points x. NeRF
builds an implicit function, which maps the 3D position of
points x = (x, y, z) to colors c and weights w of rendering.
In practice, the positional encoding scheme [23] is applied in
NeRF and projects x to a higher-dimensional space by sine
and cosine functionswith increasing frequencies. Thismakes
MLPs model high-frequency details of captured images.

The color of r is determined by the summation:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

C(r) =
n∑

i=1

Ti (1 − exp(−σi�ti ))ci

Ti = exp

⎛

⎝−
i−1∑

j=1

σi�ti

⎞

⎠ .

(2)

where n is the number of sampled points along a camera ray,
�t = ti+1 − ti , σ and c are learned by neural networks.
NeRF++ [32] proposes an inverted sphere parameterization
to boost the capability of NeRF in unbounded scenes. It par-
titions the scene into two components with spatial points: the
inside unit sphere and theoutside inverted sphere, to represent
the foreground and the background separately. Specifically,
spatial points {x|(x2 + y2 + z2) ≤ 1} are considered in the
foreground and other points are in the outer volume. Given
that t ∈ (0, t

′
) is inside the sphere and t ∈ (t

′
,∞) means the

region outside the sphere, then Eq. 2 can be rewritten as:

C(r) =
n
t
′

∑

i=1

(1 − exp(−σi�ti ))c f i

+ Tn
t
′

n∞∑

i=n
t
′
(1 − exp(−σi�ti ))cbi .

(3)

where Tn
t
′ is the accumulated transmittance of sampled

points inside the sphere.
Based on the implicit volume rendering [10, 32] and

surface rendering [30], NeuS [26] builds an appropriate con-
nection between the implicit signed distance function (SDF)
and rendered colors. It uses the same scheme of NeRF++
to handle the background scene and proposes constructing
weights of rendering from the implicit SDF for the fore-
ground scene and achieves promising scene surfaces and
renderings.

3.2 Positional bias field

A car mainly comprises semi-transparent windows and a
highly reflective car body. Both specular reflection and
refraction appear on semi-transparent windows. On the car
body, the specular reflection is distorted on the surface. So,
the actual ray tracing is hard to be correctly modeled in a
real-world scene with cars without the accurate surface nor-
mal and material information of cars. Due to the ambiguity
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Fig. 4 Effect of the reconstituted view direction d
′
. It maintains the consistency of the camera center after reconstituting spatial points and preserves

the thin structures of cars

of each training view caused by specular reflections on cars,
synthesizing novel views of real-world unbounded scenes
with cars is an ill-posed problem.

MirrorNeRF [27] warps points into a canonical space with
a carefully designed latent code to handle position deviates of
a specified mirror. It proposes to implicitly retrieve the error
pattern in a deformable field. For rendering cars by NeRF-
based methods, specular reflections break the consistency
between adjacent views and confuse neural networks to gen-
erate inaccurate specular reflections of novel views. Inspired
by MirrorNeRF, we consider implicitly restoring this con-
sistency in a deformable field by retrieving positional bias.
Specifically, we use a neural network �(x) → �x to build
this field and predict a 3Dposition deviation for each sampled
point.

We focus on the foreground points, i.e., x = (x, y, z)|
x, y, z ∈ [−1, 1]. Thus, we set the last activation function
of � with Tanh, and then the reconstituted points x

′
can be

presented as:

x
′ = (x + �x)

2
. (4)

x
′
also belongs to the foreground. To remove the ambiguity

of the camera center c after reconstituting spatial points, we
reconstitute the view direction d according to Eq. 1:

d
′ = x

′ − c
t

. (5)

As Fig. 4 shows, reconstituting the view direction preserves
thin structures of the car and reduces noisy specular reflec-
tions.

3.3 Regularization

Although the positional bias field provides a canonical space
to interpolate specular reflections in novel views, the inter-
polation accuracy depends on the implicit representations
learned from reconstituted points. However, the efficiency
of retrieving an appropriate positional bias is limited by the
searching space. Ideally, the reconstituted points for render-
ing specular reflections should be on the path of the reflected

Fig. 5 Notation of the proposed searching space. The dotted curve is
our designed searching space

light. In terms of the previous section, the default searching
space is the entire foreground (i.e., a sphere). This searching
space makes neural networks easily suffer from local min-
ima. To improve the efficiency of retrieving the incident light
path, we reduce the searching space of each sampled point
from the whole sphere to a spherical surface.

We design a novel searching space to address this issue
by introducing a regularizer. As illustrated in Fig. 5, pr is a
reference point on a camera ray and pt is the target point on
the incident light path. For each xi = pr of n sampled fore-
ground points, we estimate the distance li = √

x2 + y2 + z2

between it and the origin point o of the world coordinate sys-
tem. Then, we take li as the radius of a sphere. Given the
distance l

′
i between the reconstituted points x

′
i and o, we tie

l
′
i by using a penalty:

�p = 1

n

∑

i

‖l ′i − li‖2. (6)

The spatial position of x
′
is constrained on the same sphere

with x. This scheme ensures that each pr corresponds to an
optimal point pt and encourages neural networks to seek pt
on a spherical surface.

Physically, the incident light travels in a line. Hence, the
retrieved points also ideally distribute along a line. We pro-
pose the second regularization term to make the retrieved
points satisfy this constraint. We aim to physically map the
sampled points along a ray to the incident light by neural net-
works, so the reconstituted points from the same ray should
also distribute along the same line. To achieve this, we pro-
pose to penalize the reconstituted points from a ray that is
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Fig. 6 Effect of �l . Keeping the
reconstituted points along a line
makes neural networks trace the
target light physically and
render more accurate specular
reflections

non-collinear. We set the vector qi = x
′
i+1 − x

′
i , then this

regularization term can be written as:

�l = 1

n

n−1∑

i=1

qi−1 ⊗ qi . (7)

where ⊗ is the cross product. This regularization advises
neural networks to reconstitute points along the target light
path for rendering more photo-realistic specular reflections.
Figure 6 illustrates that our model can render more accurate
specular reflections with the aid of �l .

3.4 Rendering

Inspired by the traditional Phong model, the outgoing radi-
ance Lout on a car surface can be modeled as Lout =
Lspec + Ldiff , where Lspec represents the specular part and
Ldiff represents the diffuse part. These parts are generated
from the incident light. To implicitly trace the light, we
assume L in can be implicitly retrieved from Lout by thewhole
optimization process. In our work, we propose the positional
bias field Fp to map the sampled points x to the target points
x

′
and reconstitute the view direction d

′
. With the help of

regularization and neural networks {Fcs, Fcd}, we model the
specular color cs of Lspec by cs = Fcs(x

′
, d

′
), and the diffuse

color cd of Ldiff by cd = Fcd(x
′
). Two parts are linearly com-

bined to be supervised by the captured image and adaptively
optimized by training {Fcs, Fcd}. We add the diffuse color cfd
with the specular color cfs of the foreground region to be the
foreground color c

′
f :

c
′
f = cfd + cfs. (8)

In terms of Eqn. 3, we can acquire the final rendered image
C by:

C = Cf + Cb. (9)

where Cf is the foreground image and Cb is the background
image.

3.5 Loss Function

In this paper, we embed our module in NeuS [26] and
NeRF++ [32]. We adopt the same loss function of each
basic model and combine it with our proposed regulariza-
tion. Given the batch size b, the loss function of NeuS is
defined as:

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

Lr = 1

nb

∑

k,i

(|∇ f (pk,i )| − 1)2,

Lc = 1

b

∑

i

‖Ci , C̃i‖.
(10)

where f is the implicit SDF and C̃ is the ground-truth color.
The loss function of NeRF++ is defined as:

Lc = 1

b

∑

i

‖Ci , C̃i‖2. (11)

Then, the whole loss function applied in this paper can be
written as:

L = Lc + αLr + ϕp�p + ϕl�l . (12)

In practice, we set α = 0.1 of NeuS and ϕp = 1.0, ϕl = 0.01
by default.

4 Experiments

To evaluate our module, we embed it in NeuS and NeRF++
with fair settings and acquired two results (‘Ours’ and
‘Ours++’) of each basic model in challenging unbounded
scenes captured around cars. We conduct comprehensive
experiments with comparisons among other approaches on
eleven scenes quantitatively andqualitatively.As inNeRF++,
the camera parameters of each scene are estimated by the
publicly available tool COLMAP [19]. Then, they are nor-
malized and recentralized to ensure the origin point o of the
world coordinate system close to the car.
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4.1 Datasets

4.1.1 CO3D and IBR dataset

CO3D dataset [15] is a large-scale dataset with real-world
multi-view images of common object categories captured by
a phone camera. We select four unbounded scenes (‘Car-
1’,‘Car-2’,‘Car-3’ and ‘Car-4’) with cars from the CO3D
dataset. In addition,we select two unbounded scenes (‘Car-5’
and ‘Car-6’) with cars from the IBR dataset [18], which cap-
ture images with a GoPro. In other NeRF-based papers, they
usually evaluate their methods in almost six scenes. Based
on this observation, we also collect six scenes from different
datasets for evaluating the performance and robustness of our
method.

4.1.2 Tanks and temples dataset

Tanks and Temples dataset [9] consists of hand-held cap-
tured scenes. To explore the effectiveness of our module in
unbounded scenes with other reflective objects, we select a
scene named ’Horse’ from this dataset. Moreover, we use
the same split between the additional four training and test
scenes of this dataset for evaluating the performance of our
module under the photometric variation during training.

4.2 Implementation details

We implement our module with several MLPs. For the posi-
tional bias field, �(x) is parameterized by an MLP, which
consists of 4 linear layers. To decompose the foreground
color, we use two MLPs to learn specular and diffuse col-
ors separately. We follow the implementation details of basic
models to integrate our module. For training each model, the
batch size of rays at an iteration is 1024, and each model is
trained for 200k iterations on a single NVIDIA Tesla V100
GPU. The optimizer and the scheduler of the learning rate
are set from the released codes of each model.

4.3 ComparedMethods

We evaluate our module against NeRF by the widely-used
released codes of NeRF1 with normalized device coordi-
nates. We also evaluate our module against Stable View
Synthesis [17] by the officially released codes2, it is trained
on extra scenes and represents the state of the art of IBR in
rendering unbounded scenes with prior geometry informa-
tion. We use the officially released codes3 4 of NeuS and

1 https://github.com/yenchenlin/nerf-pytorch.
2 https://github.com/isl-org/StableViewSynthesis.
3 https://github.com/Totoro97/NeuS.
4 https://github.com/Kai-46/nerfplusplus.

Table 1 Quantitative comparison of test views between ourmethod and
previous methods on the CO3D and IBR datasets

Methods PSNR↑ SSIM↑ LPIPS↓ #Params

NeRF 21.87 0.589 0.531 1.2M

Stable view synthesis 21.40 0.730 0.382 12.3M

NeuS 23.78 0.762 0.473 1.4M

NeRF++ 24.43 0.774 0.446 2.4M

Ours 24.65 0.790 0.441 1.8M

Ours++ 24.80 0.798 0.412 3.4M

Best metrics are highlighted

Table 2 Quantitative comparison of test views between our method,
Ref-NeRF ( [24]) and Mip-NeRF 360 ( [2]) on ‘Car_6’

Methods PSNR↑ SSIM↑ LPIPS↓
Ref-NeRF 22.47 0.667 0.626

Mip-NeRF 360 26.81 0.862 0.446

Ours++ 27.68 0.864 0.441

Ours 360 27.09 0.871 0.421

Best metrics are highlighted

NeRF++ as basic models and compare them separately. For
current methods Ref-NeRF and Mip-NeRF 360, which are
built on Mip-NeRF [1] and based on 3D conical frustums
instead of rays.We adopt their officially released codes5 with
the same setting of other methods for fair comparisons.

4.4 Metrics

We use three traditional image similarity metrics for quanti-
tative evaluation of all methods: Peak Signal-to-Noise Ratio
(PSNR) andStructural Similarity IndexMeasure (SSIM).We
also compute the Learned Perceptual Image Patch Similarity
(LPIPS) [33], which is related to the human perceptual dis-
tance. Thesemetrics are estimated between the output results
of each model and ground-truth images in novel views on
average of a scene.

4.5 Comparisons

Table 1 shows quantitative results of ourmethod and previous
models in novel views on the CO3D and IBR datasets. The
performance of Stable View Synthesis(SVS) [17] relies on
the 3D surfaces of scenes, which decrease dramatically in the
unbounded scenewith cars because of the inherent ambiguity
and the reflective ambiguity. When embedded with our mod-
ule, NeuS (Ours) achieves over 0.8dB better than the basic
model on PSNR, nearly 3% SSIM gain with lower LPIPS
on average. It also attains more precise results with fewer

5 https://github.com/google-research/multinerf.
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Table 3 Quantitative comparison of test views between our method and basic models in each scene of the CO3D and IBR dataset

Scene PSNR↑ SSIM↑ LPIPS↓
NeuS NeRF++ Ours Ours++ NeuS NeRF++ Ours Ours++ NeuS NeRF++ Ours Ours++

Car-1 21.48 21.62 21.90 21.82 0.756 0.741 0.773 0.770 0.419 0.410 0.382 0.364

Car-2 22.90 22.61 22.85 22.74 0.668 0.652 0.671 0.690 0.452 0.461 0.443 0.417

Car-3 25.58 25.76 26.02 26.42 0.829 0.829 0.834 0.853 0.411 0.383 0.407 0.352

Car-4 22.47 26.05 26.31 26.09 0.683 0.790 0.807 0.797 0.531 0.401 0.398 0.389

Car-5 23.87 23.84 24.06 24.06 0.809 0.802 0.821 0.816 0.528 0.525 0.508 0.510

Car-6 26.39 26.67 26.77 27.68 0.828 0.832 0.836 0.864 0.495 0.493 0.497 0.441

Best metrics are highlighted

Fig. 7 Qualitative comparison of test views between our method and previous approaches on the CO3D and IBR datasets. The best metrics on
PSNR are highlighted. Our module helps basic models interpolate more accurate specular reflections on cars with fine details
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parameters thanNeRF++.NeRF++ (Ours++) strengthens the
performance of NeRF++ on both PSNR and SSIM, with the
second-lowest LPIPS. When compared with recent meth-
ods based on Mip-NeRF, as Table 2 presents, our method
(Ours++) outperforms Ref-NeRF and achieves over 0.8dB
better thanMip-NeRF 360 on PSNR.We apply our proposed
schemes (Ours 360) to Mip-NeRF 360 (only reconstituting
the view direction) and also improve its performance on all
metrics.

We present quantitative results of each scene on the CO3D
and IBR datasets in Table 3. The first group consists of scenes
captured by the camera motion with a higher degree of free-
dom than the cameramotion of the secondgroup.Ourmodule
significantly helps basic models render more accurate novel
views in each scene. Especially, our module improves the
PSNR of NeuS by 3.7dB in ‘Car-4’ and NeRF++ by 1dB in
‘Car-6’. Figure 7 shows the qualitative results of test views in
three scenes. SVS sometimes renders clearly visible reflec-
tions but fails to interpolate accurate specular reflections on
cars. NeRF suffers from massive noise in the output results.
NeuS synthesizes over-smooth images, and some regions of
highlights on cars are missing. Our module tackles these
problems of NeuS and recovers correct highlights. NeRF++
generates noisy reflections with a lack of fine details. Our
module preserves more details of reflections than NeRF++.

4.6 Ablation study

Unbounded scenes with cars encode much ambiguity in dif-
ferent views. Rendering these scenes is a challenging task.
To explore the impact of each component of our module
on the performance of basic models, we conduct a sufficient
ablation study on ‘Car-4’ by disabling each component sepa-
rately. Table 4 shows quantitative results of different settings
for NeuS equipped with our module (Ours). With each com-
ponent dropped, the performance degrades reasonably.

4.6.1 Effect of positional bias field

We propose to reconstitute the sampled points along rays for
retrieving appropriate points along the incident light path.
When the positional bias field is disabled, the performance of
our model degrades over 1dB on PSNR and 3.5% on SSIM.
This demonstrates the effectiveness of the positional bias
field.

4.6.2 Effect of reconstituting view direction

The view direction is defined as the direction vector from the
camera center to the sampled points according toEq. 1.When
acquiring the reconstituted points through the positional bias
field, we can reconstitute the view direction to remove the

Table 4 Ablation study of our module on the ‘Car-4’

Settings PSNR↑ SSIM↑ LPIPS↓
Basic Model 22.47 0.683 0.531

No d
′
, w/ d 25.78 0.793 0.411

No positional bias field 25.27 0.772 0.448

No regularization 25.65 0.788 0.420

No diffuse 25.58 0.787 0.419

Ours 26.31 0.807 0.398

Best metrics are highlighted

ambiguity of the camera center. This helps neural networks
generate more accurate results.

4.6.3 Effect of regularization

We design a searching space for retrieving appropriate points
efficiently by a novel regularizer and propose a regulariza-
tion term to adjust the distribution of reconstituted points
for more accurate reflection interpolation. To determine
whether the regularization is a significant scheme for ren-
dering unbounded scenes with cars, we disable it from our
full model. The performance of the model without the regu-
larization on PSNR drops by 0.6dB when compared to our
full model. This demonstrates that regularization plays an
important role in our tasks.

4.6.4 Effect of diffuse color

We decompose the learned foreground color into diffuse
color and specular color to reduce the effect of various mate-
rials and textures of cars for rendering. The diffuse color
encodes the essential information of cars with less ambigu-
ity and makes neural networks can pay more attention to
rendering more complicated specular colors. To verify the
necessity of this decomposition, we disable the diffuse path
with other components of our module enabled. The perfor-
mance of the model without the diffuse path on all metrics
degrades. However, due to the robust positional bias field, it
also achieves the 3.1dB gain on PSNRwhen compared to the
basic model.

4.6.5 Effect of parameters

We use α,ϕl and ϕp to adjust weights of each regularization
term for better performance. α = 0.1 is adopted from NeuS.
To evaluate the effect of other parameters, we first set ϕp =
1.0 and change ϕl . Then, we set ϕl = 0.01 and change ϕp.
The results are presented in Table 6.
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Fig. 8 We evaluate our module on an unbounded scene with a reflective table on the ‘Horse’ of Tanks and Temples dataset. Basic models embedded
with our module interpolate more accurate specular reflections on the table, where the SOTA method fails

Table 5 Quantitative comparison of test views between ourmethod and
previous approaches on the ‘Horse’ of Tanks and Temples dataset

Methods PSNR↑ SSIM↑ LPIPS↓
NeRF 17.37 0.568 0.554

Stable view synthesis 22.46 0.921 0.148

NeuS 21.72 0.826 0.380

NeRF++ 22.49 0.838 0.363

Ours 21.84 0.836 0.369

Ours++ 22.63 0.851 0.353

Best metrics are highlighted

4.7 Generalization

We also explore the generalization ability of our module
by replacing cars with other reflective objects in unbounded
scenes. We select a scene named ‘Horse’ of Tanks and Tem-
ples dataset with a reflective table. Figure 8 shows qualitative
results of our method, baselines, and the SOTA model. Our
module successfully helps basic models interpolate more
accurate reflections on the tabletop in this scene. Table 5
presents quantitative results of novel views in this scene.
We integrate our module into NeRF++ and achieve the
best performance on PSNR when compared with previous
approaches.

5 Discussion

5.1 Appearances

Decomposing the diffuse color and the specular color from
real-world reflective objects without any prior is an ill-posed
problem.As Fig. 9 shows, ourmodule faithfully separates the

diffuse and specular color from the rendered foreground color
in real-world unbounded scenes. The diffuse color is pro-
duced from the reconstituted points, and specular reflections
are missing. The specular color is learned from the reconsti-
tuted points combined with the view direction and contains
actual specular reflections.During training themodel embed-
ded with our module, we only adopt the captured image to
supervise the final rendered image. So the diffuse and spec-
ular colors are separated implicitly. This also illustrates that
our points bias field can model foreground scenes physically.
Our method decomposes the car into diffuse and specular
parts without corresponding ground-truth data, generating
a high-fidelity diffuse part is an ill-posed problem. In the
unbounded scenes, the sampled points behind the car also
affect the quality of the diffuse part. In the first row of Fig. 10,
our model considers the red light as the diffuse part because
the light is not on. In the last row of Fig. 10, the light of the
red car is considered as the specular part.

5.2 More details and comparisons

We test the running time of our method and basic mod-
els on a single GPU. The resolution of the testing image
is 947 × 536. NeuS costs 64.3 s per image, and ours costs
72.8 s per image. NeRF++ costs 77.2 s per image, and ours++
costs 95.8 s per image. For the view consistency, our method
is stable under changing views, we show the continuously
changing views and estimate working regions from the opti-
cal flow by RAFT [22] in Fig. 11. The positional bias field
transforms spatial sampled points from the fixed volumetric
space to a deformable space, for tracing the incident light
more effectively and physically. The temporal consistency is
learned during the optimization. We also illustrate the posi-
tional bias field visually in Fig. 12.
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Fig. 9 Our module can edit the foreground of a scene by modifying the diffuse color. ‘Ours_g’ means our result with green diffuse color. ‘Ours_p’
means our result with purple diffuse color

Fig. 10 Example of appearances from the diffuse and specular paths in our module. These appearances of the same view contain the same
background color. Our module separates meaningful diffuse and specular parts from the ground truth

Based on the above observations, we can modify the
learned diffuse color and then edit the foreground of scenes.
Figure 10 shows a visualization of editing a red car by chang-
ing the channel order of the diffuse color. The surface color
of this car is changed physically, while the rendered specular
reflections still appear on cars. This indicates that besides
interpolating accurate reflections in novel views, our module
can supply more reliable augmentation of a car by physically
editing its color.

We further compare our method with relative models in
four scenes of the Tanks and Temples dataset. These scenes
suffer from photometric variation across images, and there
are few reflective objects in these scenes. So, these scenes
are ill-suited to our goal. As Table. 7 presents, our mod-
ule facilitates NeRF++ outperformingMip-NeRF, which has
much larger parameters. SVS achieves the best performance
because it can predict the photometric variation of these
scenes.

Table 6 Effect of parameters of regularization terms

ϕl 0.01 0.25 0.5 0.75

PSNR 26.31 25.23 24.80 23.69

ϕp 1.0 0.7 0.5 0.3

PSNR 26.31 26.16 25.10 26.18

5.3 Limitations

Wezoom in several regions of the car to visualize the specular
reflection in Figs. 4, 6, and 7. Although our module achieves
more accurate renderings than basic models in unbounded
scenes with cars, several details of specular reflections are
still missing. One possible optimization of further work is
enhancing the representation ability of neural networks for
rendering the specular color.
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Fig. 11 View consistency. From left to right, the rendered images are continuously changing views. The white regions are working regions of our
model

Fig. 12 Visualization of the positional bias field. Top: rendered novel views. Bottom: transformed spatial points in the positional bias field

Table 7 Quantitative comparison of test views between ourmethod and
relative approaches on the Tanks and Temples dataset [9]

Methods PSNR↑ SSIM↑ LPIPS↓ #Params

NeRF 18.72 0.609 0.473 1.2M

NeRF++ 19.32 0.647 0.425 2.4M

Mip-NeRF 19.85 0.697 0.340 9.0M

Stable View Synthesis 21.13 0.777 0.209 12.3M

Ours++ 20.03 0.696 0.459 3.4M

Best metrics are highlighted

6 Conclusion

In this work, we aim to render accurate novel views in
unbounded scenes with cars and have proposed a novel mod-
ule to facilitate basic models tackling this task. We focus
on the ambiguity caused by specular reflections on cars. In
our module, we propose a novel positional bias field learned
from the sampled points along rays with two effective reg-

ularization terms, for retrieving the positional bias between
the sampled points and the target incident light path. We
implicitly decompose the foreground color into diffuse color
and specular color for acquiring smooth results. We conduct
extensive experiments on real-world datasets for evaluation.
Our module significantly improves the performance of basic
models in terms of quantitative and qualitative comparison.
Moreover, our module faithfully separates the diffuse and
specular parts in the foreground and makes the basic model
that can edit scenes physically.
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