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Abstract
In this paper, we focus on dense view synthesis with free movements in indoor scenes for better user interactions than sparse
views. Neural radiance field (NeRF) handles sparsely and spherically captured scenes well, while it struggles in scenes with
dense free views. We extend NeRF to handle these views of indoor scenes. We present a learning-based approach named
relative depth guided NeRF (RDNeRF), which jointly renders RGB images and recovers scene geometry in dense free views.
To recover the geometry of each view without the ground-truth depth, we propose to directly learn the relative depth by
implicit functions and transform it as a geometric volume bound for geometry-aware sampling and integration of NeRF.
With correct scene geometry, we further model the implicit internal relevance of inputs to enhance the representation ability
of NeRF in dense free views. We conduct extensive experiments in indoor scenes for dense free view synthesis. RDNeRF
outperforms current state-of-the-art methods and achieves 24.95 PSNR score and 0.77 SSIM score. Besides, it recovers more
accurate geometry than basic models.

Keywords Dense free view synthesis · Neural radiance fields · Relative depth · Internal relevance

1 Introduction

Rendering novel views of a scene is a fundamental and
challenging task in computer graphics and vision. Image-
based rendering methods [1, 4, 14, 29, 30, 48, 52] have been
proposed to fix scene geometry into synthesizing images.
However, they have limited control over the quality of their
results in novel views.

NeRF [27] tackles this issue and achieves impressive
results of novel view synthesis, which combines the standard
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volume rendering [20] and neural implicit representations. It
packs the whole scene into a fixed-bound volume, which
is available to fit the correct geometry of spherical views
because the rendered depth can be estimated by integrating
learned volumetric density. Despite the success in rendering
spherical views, we observe that NeRF achieves poor render-
ing results in dense free views synthesis. As shown in Fig. 1,
the rendered depth of NeRF illustrates the wrong geometry
in dense free views of indoor scenes, which results in a noisy
rendered image. Unlike sparse spherical views in which the
cameramoves at a fixed distance around the rendered objects,
dense free views [5] are captured by a camera moves with
arbitrary motion. In this work, we aim to improve NeRF for
rendering realistic dense free views.

In the following, we have summarized the reasons why
NeRF often fails in dense free views synthesis. (i) The
geometric relationship between objects and the camera is
continuously changing in dense free views. For example,
when the camera moves to a chair, the distance between the
camera and the chair decreases. This geometric relationship
is hard to be modeled by neural volume rendering with a
fixed volume bound. (ii) The same object can be observed in
each spherical view of NeRF’s scenes [27], while they only
exist in a few views captured by the freely moving camera
(e.g., the chair shown in Fig. 1). Thus, dense free views suffer
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Fig. 1 In dense free views
(more than 500 views) of a
scene, the content of a view may
appear at an arbitrary distance.
This ambiguity makes
NeRF [27] fail to extract the
correct geometry of this scene,
then synthesize noisy views. We
tackle this ambiguity and
synthesize a more realistic novel
view with more accurate
geometry

Fig. 2 Overview about
RDNeRF and NeRF [27]. In
NeRF, the volume bound of
each camera ray is usually set as
a constant value in a view. In
RDNeRF, we learn the relative
depth from a generalizable
model [46] to recover the
correct scene geometry and
guide the sampling and
integration of NeRF. We also
enhance the representation
ability of MLPs. The point
cloud demonstrates that our
model achieves more realistic
and geometry-aware rendering

frommore ambiguity than spherical views. NeRF consists of
vanilla MLPs with a limited ability of scene representation,
whichmakesNeRF hard to handle the tremendous ambiguity
of dense free views.As shown in Fig. 2,NeRF reconstructs an
incorrect 3D view because of the incorrectly rendered depth
and low-quality rendered image.

To remedy these issues, we propose a framework called
RDNeRF, an extension ofNeRF that renders dense free views
and recovers the scene geometry simultaneously. The overall
pipeline of our framework is visualized in Fig. 3. Specifically,

we tackle this challenging task in two aspects: (i) recovering
scene geometry by learning the relative depth. The depth of
the real-world scenes needs expensive devices to be acquired.
And the obtained depth often loses some important parts of
objects. We propose to utilize a generalizable model [46]
to generate the relative depth, recovering the holistic scene
geometry. Due to the lack of actual scale in the relative
depth, we take it as the relative distance between objects
and the camera to build the spatial context of camera rays.
(ii) Modeling the internal relevance of the sampled points
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Fig. 3 The architecture of
RDNeRF. Our framework
consists of two parts: relative
depth prediction and novel view
synthesis. a Predicting the
relative depth for a geometric
volume bound. b Sampling
spatial points x along the
camera ray (r). c The backbone
of RDNeRF with the
self-attention mechanism. a, c
are parameterized by MLPs.
The sampling procedure and
integration of RDNeRF are
guided by the geometric volume
bound

along camera rays for the view ambiguity. We observe that
there are more sampled points in the volume for dense free
views than sparse views for rendering. We consider the inter-
nal relevance between the sampled points along a camera ray
in a view cannot be modeled well by NeRF. We enhance the
internal relevance among the sampled points by using the
self-attention mechanism.

In summary, the main contributions of our paper are:

• We design a NeRF-based framework for dense free
view synthesis, named RDNeRF, which can render high-
quality images with accurate geometry in real-world
indoor scenes.

• We model the spatial context between each camera ray
by learning the relative depth and transforming it as a
geometric volume bound.

• We build the internal relevance of the sampled points
along camera rays by the self-attention mechanism,
enhancing the representation ability of neural radiance
fields in dense free views.

2 Related work

2.1 Novel view synthesis

Novel view synthesis is a long-standing problem in com-
puter graphics and vision. Learning-based methods have led
to significant progress toward novel view synthesis [7, 11,
19, 22, 24, 25, 27, 31, 35, 36, 39, 45, 47, 49]. These methods
used volume rendering to generate the rendered image and
depth. NeRF++ [49] extended NeRF to unbounded scenes.
It partitioned the scene space into two volumes, an inner

unit sphere and an outer volume represented by an inverted
sphere covering the complement of the inner volume. This
strategymadeNeRF++ handle unbounded sceneswell. Simi-
lar to unbounded scenes, indoor scenes with dense free views
also suffer from internal ambiguity. Neural sparse voxel field
(NSVF) [24] learned the underlying voxel structures with
a differentiable ray-marching operation from posed RGB
images. However, it needed the ground-truth depth to ini-
tialize the volume bound, and its training process cost many
computational resources.

Recently, COLMAP-basedmethods [10, 37, 44] adopt the
sparsemetric depth estimated fromCOLMAP [38]. Themet-
ric depth represents the actual distance between objects and
the camera. It can supervise the rendered depth to recover the
scene geometry. NerfingMVS (NMVS) [44] and dense depth
priors (DDP) [37] trained an extra scene-specific depth net-
work to get dense metric depth of a scene. Depth supervised
NeRF (DS-NeRF) [10] used the sparse metric depth from
COLMAP to supervise the rendered depth. These methods
are limited by sparse views of a scene and the reconstruc-
tion quality of COLMAP. Dense views have better user
interactions when compared with sparse views, while they
encode more ambiguity for accurate rendering. When we
applied these methods to dense free views, they failed when
COLMAP estimated the inaccurate geometry. Depth Oracle
NeRF (DONeRF) [28] degraded sharply without ground-
truth depth as the supervision. In contrast to these approaches,
our method removes the dependence on the COLMAP and
ground-truth depth, by building the spatial context and mod-
eling the internal relevance to handle dense free views of
real-world scenes.
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2.2 Learning-basedmonocular depth estimation

The depth estimation task is proposed to recover higher-
dimensional depth information from low-dimensional image
information. With big achievements made in machine learn-
ing and deep learning, the supervised learning methods had
achieved impressive performance for depth estimation [6,
13, 15, 21, 23, 41]. These methods needed ground-truth
depth maps for training, which was commonly tricky to
acquire. Furthermore, these approaches worked well in spe-
cific scenes but did not generalize well to other scenes due
to the limitation of training data. Unsupervised learning also
made significant progress for depth estimation [2, 3, 17, 18,
32, 51]. These approaches did not need the ground truth
depth map. During training, these methods applied differ-
entiable warping and minimized photometric reprojection
error. However, unsupervised learning suffers from limited
generalization ability. For generalizable monocular depth
estimation, Ranft et al. [33] and Yin et al. [46] proposed
to mix several datasets to enhance generalization and used
deep neural networks to predict depth. Our model takes cam-
era parameters instead ofRGB images as the input to estimate
the relative depth of a view, with the supervision of results
from the generalizable model [46].

3 Methodology

3.1 Revisiting neural radiance field (NeRF)

NeRF takes 5-dimensional (5D) vectors as the input, includ-
ing 3D pixel coordinates and 2D view directions. 5D vectors
are generated from the camera intrinsic parameters andposes,
which are then formed as camera rays. Formally, NeRF
models the view-dependent representations in a fixed-bound
volume bound by implicit functions FN : (x,d) → (c, σ ),
which maps a point x with the view direction d to RGB val-
ues c and a density value σ .

The implicit representations of c and σ are ray-traced to
render eachpixel p of an image.Acamera ray canbe formally
defined as: r(s) = x0 + sd, which denotes that the camera
ray initialized with camera center x0, sampled by the depth
s and controlled by the unit camera direction vector d. The
volumetric radiance field along a camera ray can be rendered
into an RGB image by:

Î (p) =
∫ d f

dn
T (s)σ (r(s))c(r(s),d)ds, (1)

where

T (s) = exp

(
−

∫ s

dn
σ(r(h))dh

)
(2)

and a rendered depth map can also be generated as:

D∗(p) =
∫ d f

dn
T (s)σ (r(s))sds (3)

The integral is computed between pre-defined near and far
depth dn and d f , which are usually two constants in NeRF. In
practice, NeRF samples 3D points along each camera ray and
performs this approximate integral with numerical quadra-
ture [26].

NeRF consists of two MLPs, including a coarse sampling
network and a refining network. The coarse network sparsely
samples the volume with a fixed-bound grid and then learns
the rough boundary of objects in a scene. The refining net-
work utilizes the coarse density to produce a dense sampling
pattern along the same camera ray according to the loca-
tion of high-density gradients. In our work, we use relative
depth to constrain the geometric volume bound (Sect. 3.2)
and enhance the scene representations of MLPs by modeling
the internal relevance of sampled points (Sect. 3.3).

3.2 Relative depth guided sampling and integration

In NeRF [27], the quality of scene geometry can be rep-
resented in the rendered depth, and the high-quality scene
geometry usually exhibits well-rendered images. As shown
in Fig. 1, NeRF estimates incorrect scene geometry and ren-
ders a noisy RGB image for dense free view synthesis. To
remedy this issue, we improve NeRF in rendering scenes
with complex camera motion by recovering correct scene
geometry first and then use this prior to guide NeRF render-
ing images with more accurate geometry. Figure3 shows the
overview of our framework.

Most metric depth maps captured by 3D sensors or esti-
mated by COLMAP are sparse [37, 44]. In contrast, the
relative depth generated from the generalizable method [46]
can supply dense and stable depth without expensive sen-
sors. We adopt the relative depth instead of the sparse metric
depth to recover the holistic scene depth. We utilize neural
networks to learn the relative depth in training views and gen-
erate it in novel views. NeRF proves that neural networks can
learn implicit functions for rendering images from camera
parameters. Essentially, NeRF models a one-to-one corre-
spondence from camera parameters to the rendered image at
each viewpoint of a scene by implicit functions. We build
another one-to-one correspondence from camera parameters
to the relative depth by implicit functions at each free view-
point. To obtain the view-dependent relative depth dr , we
design a sub-network with implicit functions FD , which can
be denoted as: FD : (x0,d) → dr . It is composed of four
fully connected layers followed by ReLU and takes the cam-
era center and the view direction of each pixel as the input.
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To utilize the learned relative depth guide the rendering
procedure, we build a connection between the relative depth
estimation and image synthesis. Because the relative depth
models the geometric relationship between objects and the
camera in a view, we consider transforming it as the relative
distance to be a geometric view bound. When acquiring the
learned relative depth, we normalize it as drn and use a lin-
ear transformation: Td : {d f = a ∗ drn + b}, which maps
the relative depth to the far depth d f of Eqn. 1. This oper-
ation produces a geometric volume bound which encodes
the spatial context between each camera ray of a view. With
the help of the geometric volume bound, we can achieve the
geometric-aware sampling and integrate more accurate ren-
dered depth and rendered RGB images by volume rendering.

Related methods [37, 44] are limited by the quality of the
metric depth from COLMAP. In contrast, we use the relative
depth (relative distance) instead of the metric depth (actual
distance) to guide both sampling and integration.

3.3 Modeling internal relevance of sampled points

In forward-facing or spherically captured scenes, the same
objects in these scenes almost exist at each sparse viewpoint.
It makes these scenes easy to be parameterized by learn-
ing to map sampled points to color values. In dense free
views, the number of totally sampled points in the global vol-
ume increases dramatically which augments the ambiguity
of mapping. It is extremely hard for NeRF to render accurate
images due to the ambiguity [11].

Transformers [12] have been successfully applied to
several vision tasks. The core part of the transformer is
the multi-head self-attention mechanism. It can reduce the
reliance on external information and capture the internal rele-
vanceof learned features to improve the representation ability
of neural networks [40]. The geometric volume bound builds
the spatial context of camera rays in each view. For the totally
sampled points, we notice that the internal relevance of them
along camera rays has not beenwellmodeled in vanillaMLPs
of NeRF. This relevance between each sampled point can
supply more information for neural networks to handle the
ambiguity from the large number of sampled points. Con-
sidering the advantages of the self-attention mechanism, we
propose to utilize it for modeling the internal relevance of
sampled points to boost the representation ability of vanilla
MLPs.

As illustrated in Fig. 4, we model this relevance by inte-
grating a spatial self-attention module into the backbone of
NeRF. Firstly, we feed the embedded location into an initial
layer to acquire features. Then, we use the multi-head atten-
tion module and short-cut connection following the initial
layer to model the internal relevance. The rest components
of our backbone are the same as NeRF.

Positional 

Encoding

Initial 

Layer

Multi-Head

Attention

Fig. 4 Modeling the internal relevance of sampled points.We apply the
self-attentionmechanism tomodel the internal relevance of the sampled
spatial points. Unlike other self-attention-based modules [34, 42], the
input of ourmodule only contains the sampled points without the source
image features

Related self-attention modules [34, 42] rely on the lim-
ited source view features to build the context between each
camera ray, while dense free views contain a large number
of source views which makes our task ill-suited for these
modules. In contrast to them, the input of our module only
consists of the spatial points in a view since the spatial con-
text between each camera ray has been well modeled by the
geometric volume bound. Figure5 shows the effectiveness
of the modeled internal relevance; it faithfully helps NeRF
render a more accurate view.

3.4 Loss function

Similar to NeRF, we optimize coarse and fine models simul-
taneously. For the rendering function FN , the loss function
LN is defined as themean squared error between the rendered
and ground-truth color of pixels. For the relative depth esti-
mation function FD , the loss function LD is themean squared
error between the predicted relative depth D̂rel and the result
Drel of the generalizable model [46]. The loss functions of
our method are formulated as follows:

LN = 1

NR

∑
r∈R

[
|| Îc(r) − Ic(r)||22 + || Î f (r) − I f (r)||22

]

(4)

LD = 1

NR

∑
r∈R

||D̂rel(r) − Drel(r)||22 (5)

L = LN + λLD (6)

where NR is the total number of camera rays R. λ adjusts the
weights between LN and LD . In practice, we set λ = 0.1.

4 Experiments

4.1 Datasets and preparation

We focus on dense views synthesis of real-world indoor
scenes and conduct adequate experiments on 9 scenes from
two datasets, including 7-Scenes [16] and ScanNet [8].
7-Scenes [16] is a collection of images with 640 × 480 res-
olution captured from the hand-held Kinect RGB-D camera,
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Fig. 5 Effect of modeling the internal relevance. ‘IR’: modeling inter-
nal relevance of sampled points along camera rays. a Effect of adding
IR to NeRF. b The test view result of NeRF. c Heatmaps of different
attention heads illustrate that the self-attention module faithfully mod-

els different relevance between a sampled point and other points along a
camera ray. These internal relevances enhance the representation ability
of MLPs and make RDNeRF achieve more accurate rendering

Table 1 Quantitative comparison of novel views between ourmethod and othermethods (NeRF [27], NeRF++ [49] andNMVS [44]) on 7-Scene [16]

Scene PSNR↑ SSIM↑ LPIPS↓
NeRF NeRF++ NMVS Ours NeRF NeRF++ NMVS Ours NeRF NeRF++ NMVS Ours

Pumpkin 22.99 22.68 24.75 25.27 0.75 0.74 0.81 0.79 0.49 0.48 0.41 0.47

Office 22.59 21.23 19.76 25.04 0.76 0.74 0.65 0.79 0.51 0.53 0.53 0.54

Heads 22.96 22.57 21.10 25.30 0.77 0.76 0.76 0.82 0.48 0.50 0.46 0.47

Chess 22.22 21.96 22.36 24.48 0.70 0.69 0.77 0.78 0.49 0.49 0.40 0.43

Fire 22.31 22.18 21.36 24.66 0.62 0.62 0.69 0.68 0.54 0.53 0.47 0.52

Mean 22.61 22.12 21.87 24.95 0.72 0.71 0.74 0.77 0.50 0.51 0.45 0.49

Best results are bold. Our model outperforms other models with PSNR and SSIM on average

Table 2 Quantitative comparison of novel views between our method
and recent approaches (DONeRF [28], DSNeRF [10] and NMVS [44])
on 7-Scene [16]

Method PSNR↑ SSIM↑ LPIPS↓
DONeRF 21.49 0.72 0.533

DSNeRF 21.53 0.75 0.498

NMVS 21.87 0.74 0.450

Ours 24.95 0.77 0.490

Best results are bold. Our model outperforms other models with PSNR
and SSIM on average

including ground-truth camera tracks. We select five scenes
from 7-Scenes. Specifically, we pick one frame from every
20 frames for testing. The remaining frames are used for
training. To reduce the frame similarity between the train-
ing and testing set, we drop the neighboring frames (within
10 frames) of every testing frame from the training set. The
average number of training images of a scene is 510.
ScanNet [8] contains 1613 indoor scenes with ground-truth
camera poses, depth maps, and RGB images. We follow the
previous works [1, 9]) for choosing four scenes and splitting

training, and testing datasets. The average number of training
images of a scene is 2588.

4.2 Experiment setup

Evaluation metrics We report several quantitative metrics,
including PSNR and SSIM [43] to measure the rendered
image quality. Besides, we also introduce LPIPS [50], which
can reflect the perception of humans more precisely for all
evaluations. For the evaluation of the relative depth estima-
tion, we follow the method [46], aligning the scale of the
rendered and learned depth to the scale of ground-truth depth
by a linear transformation. Then, we use the absolute mean
relative error (AbsRel) and the percentage error of pixels

(δ1 = max( di
d∗
i
,
d∗
i
di

) < 1.25) as quantitative metrics.

Implementation details We re-implement all experiments
of NeRF and RDNeRF based on the official code of
NeRF++ [49]. The IRM consists of three parts: positional
encoding, initial layer and multi-head attention. The posi-
tional encoding is following the traditional NeRF. The initial
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Table 3 Quantitative
comparison of novel views
between our method and other
methods (NeRF [27] and
NeRF++ [49]) on ScanNet [8]

Scene PSNR↑ SSIM↑ LPIPS↓
NeRF NeRF++ Ours NeRF NeRF++ Ours NeRF NeRF++ Ours

Scan00 23.90 23.82 24.49 0.72 0.71 0.72 0.48 0.49 0.49

Scan10 25.32 25.13 26.17 0.81 0.81 0.83 0.42 0.44 0.43

Scan16 24.51 – 24.91 0.76 – 0.77 0.42 – 0.42

Scan24 21.39 – 22.01 0.71 – 0.71 0.48 – 0.50

Mean 23.78 – 24.40 0.75 – 0.76 0.45 – 0.46

Best results are bold. Our method outperforms the basic methods with PSNR and SSIM and achieves com-
petitive results in LPIPS across most scenes. Due to NeRF++ reporting NaN loss during training on ‘Scan16’
and ‘Scan24,’ we fail to evaluate it in these two scenes

Table 4 Quantitative
comparison of novel scene
geometry between our method
and other methods (NeRF [27]
and NeRF++ [49]) on
7-Scene [16] and ScanNet [8]

Method 7-Scene ScanNet (00,10) ScanNet (16,24)

AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑ AbsRel↓ δ1 ↑
NeRF 17.39 73.18 26.67 79.50 38.26 78.80

NeRF++ 18.36 71.54 29.20 73.53 – –

Ours (Rendered) 13.55 83.20 24.47 86.03 35.45 85.01

Ours (Relative) 9.85 90.92 23.85 86.43 34.46 86.00

Best results are bold

layer is a linear layer. The multi-head attention is following
the traditional Transformer [40]. All approaches use the same
input views for model training in each scene. We train each
method for 300K iterations with a batch size of 1024 and
use the Adam optimizer. The initial learning rate is 0.0005,
which decreased by a factor of 10 at 100k and 250k steps.
All the experiments are conducted on a Tesla P100 GPU.

4.3 Comparison with relatedmethods

Our proposed method is the composition of the dense free
view synthesis and the relative depth estimation. We eval-
uate RDNeRF in indoor scenes for these two tasks against
the basic model NeRF [27] and other related methods quan-
titatively and qualitatively on selected datasets. Because we
focus on real-world indoor scenes, we use non-normalized
device coordinates and set the far depth of NeRF as 10m. ‘a’
and ‘b’ of the linear transformation Td in our framework are
set as 9 and 1, respectively.

NeRF++ [49] is an improved version of NeRF and adopts
normalized device coordinates to handle real-world
unbounded scenes. The scenes with dense free views can
also be considered unbounded scenes because both of them
suffer from internal ambiguity. We take it as the baseline to
evaluate its performance in our task.

DDP [37] and NerfingMVS [44] (NMVS) utilize a depth
completion model to generate dense metric depth from the
sparse depth prior of COLMAP by the scene-specific train-
ing. Note that DDP needs the ground-truth depth to supervise
the depth completion model. This setting is unfair to our

method. NMVS adopts scene-specific finetuning without the
ground-truth depth. Hence, we pick NerfingMVS for a fair
comparison.

DS-NeRF [10] is proposed to tackle sparse views while we
aim to deal with dense free views. We conduct a comparison
with DS-NeRF [10] because it also drops the dependence on
the ground-truth depth.

DO-NeRF [28] utilizes a modified NeRF to generate the
scene depth firstly and then adopts it to render scenes. We
also conduct a comparison with this method.

We evaluate all approaches in the tasks of dense free view
synthesis at novel viewpoints. Given camera parameters at a
novel viewpoint, our model renders an RGB image with its
rendered depth and predicts a relative depth map from the
same camera pose. We count the metrics of these outputs
with the corresponding ground-truth data.

4.4 Experiments on 7-Scenes

Figure6 shows the qualitative results of ourmethod and other
methods on 7-Scenes [16]. NeRF and NeRF++ fail to extract
the correct scene geometry. The rendered depth of NMVS is
over-smoothing and has unstable quality.Ourmodel achieves
more accurate geometry in both learned relative depth and
rendered depth. The relative depth plays an important role
in rendering RGB images. When scene geometry cannot be
modeled correctly, more artifacts and errors occur in the ren-
dered RGB image. NeRF and NeRF++ generate noisy and
blurry imageswith ghosting artifacts, especially on the chess-
board and bookcase of the top scene and thewhitewalls of the
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Table 5 Quantitative
comparison of novel views
between our method and
different settings of our method
on 7-Scene and ScanNet

Method 7-scene ScanNet

PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓
NeRF 22.59 0.76 0.51 25.58 0.83 0.43

+GVB 23.16 0.74 0.52 25.67 0.84 0.42

+IRM 24.46 0.79 0.56 26.07 0.84 0.44

Full 25.04 0.79 0.54 26.25 0.84 0.44

IRM, internal relevance module; GVB, geometric volume bound

bottom scene.On the display screen of the top scene, the local
color shifts obviously appear in their rendered RGB images.
When the correct scene geometry cannot be extracted, the
quality of RGB images synthesized by NMVS decreases
rapidly. With the correct spatial context from the learned
relative depth, our method generates cleaner, sharper objects
and smoother backgrounds than other approaches.

Quantitative results of novel view synthesis and geome-
try estimation are reported in Tables 1 and 4. Our method
outperforms the previous methods in terms of PSNR for all
scenes. In detail, RDNeRF achieves over 2.3dB better than
NeRF in terms of PSNR and reaches up to 2% advance-
ment than NMVS in terms of SSIM. In Table 4, we can see
that the learned relative depth of RDNeRF surpasses the ren-
dered depth fromNeRF andNeRF++ on all metrics. Besides,
our rendered depth is more accurate than the rendered depth
of NeRF, which demonstrates that our model extracts more
accurate scene geometry. Table 2 presents the results of our
method and recent related approaches on novel view synthe-
sis. RDNeRF achieves the best performance and outperforms
state-of-the-art methods over 3dB in terms of PSNR.

4.5 Experiments on ScanNet

Results on ScanNet [8] for novel view synthesis are shown
in Fig. 7. Due to the huge number of training views, DS-
NeRF [10] and NMVS [44] fail to handle these scenes.
NeRF and NeRF++ produce results with global and local
color shifts. These effects easily make the result unreal at
first glance. Our method preserves the boundaries of objects,
while basic models suffer from ghosting artifacts in these
regions, for example, the guitar and chairs in the scenes
shown.

Table 3 reports the quantitative results on ScanNet [8]
about synthesized novel views. Our method outperforms
NeRF over 0.6dB on PSNR and achieves competitive per-
formance on SSIM and LPIPS on average. NeRF++ fails to
converge in the last two scenes, and our results also have bet-
ter performance on all metrics in the other two scenes than it.
For scene geometry estimation in Table 4, our learned depth
and rendered depth both achieve better performance than the
rendered depth of basic models.

Table 6 Quantitative comparison of relative depth on ‘Pumpkin’ of
7-Scene [16]

Method AbsRel↓ δ1 ↑
DP_2 8.21 95.69

+GVB (Ours) 6.31 97.97

GVB, geometric volume bound; DP_2, relative depth estimation by the
original generalizable model [46] with the rendered RGB image of our
model (w/o GVB) as the input

Moreover, we conduct a user study to compare ourmethod
against NeRF and NeRF++ on the visual video quality.
We render four videos of two different scenes of Scan-
Net in novel views for each method. In the user study, we
present these videos, including the results of three meth-
ods, and invite the volunteer to select the best sub-video at
each time. And they are requested to consider which one
is most similar to the ground-truth video. We invite 27 par-
ticipants to do the user study. Each user picks four times
with four videos in a survey. The total number of pick-
ing times is accumulated to 108. Our method gets 75 picks
and achieves more picks than basic models in total. It indi-
cates that our method can render more realistic scenes than
NeRF.

4.6 Ablation study

Our full model consists of two parts, including the geo-
metric volume bound (GVB) and the internal relevance
module (IRM). To investigate the impact of each compo-
nent of our full model, we conduct the ablation study in
a scene of 7-Scene by enabling each component, respec-
tively, to the basic model and showing how performance
improves.With each component embedded, the performance
is enhanced reasonably. Quantitative results are reported
in Table 5. Qualitative results are shown in Figs. 8, 9
and 10.

Effect of the internal relevance module (IRM)To ver-
ify the necessity of modeling the internal relevance, we
integrate our designed internal relevance module into the
backbone of NeRF (‘+IRM’). The result is reported in
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Fig. 6 Qualitative comparison
of novel views and relative
depth maps between our method
and other methods (NeRF [27],
NeRF++ [49] and NMVS [44])
on 7-Scene [16]. ‘ORD’: Our
relative depth, which is
predicted by FD . The colorized
depth maps shown are all from
the rendered depth except our
relative depth
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Table 5.With the help of effective internal relevance, the per-
formance increases significantly. Specifically, PSNRelevates
over 1.8dB when compared to the basic model. How-
ever, without the spatial context, the performance of LIPIS
degrades.

Effect of the geometric volume bound (GVB)To build the
spatial context between each camera ray, we connect the
learned relative depth and the volume bound to generate
the geometric volume bound (GVB). On the one hand, the
geometric volume bound improves the accuracy of extracted
scene geometry, as reported in Table 6. Figure8 illustrates
objects that have sharper boundaries in the learned relative
depth with GVB (‘Full’) than objects without GVB. On the

other hand, the qualitative results in Fig. 9 show more real-
istic and geometric renderings (including RGB images and
rendered depth maps) when adding GVB. This demonstrates
that the geometric volume bound is effective in recover-
ing the correct scene geometry for accurate rendering. As
Table 5 presents, our full model (‘IRM + GVB’) achieves
the best performance on PSNR and SSIM with comparable
LPIPS.

4.7 Analysis

Parameters and effects Compared to NeRF, RDNeRF’s
parameters only have a 0.1M gain, while RDNeRF renders
more accurate RGB images than NeRF.
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Fig. 7 Qualitative comparison of novel views between our method and other methods (NeRF [27] and NeRF++ [49]) on ScanNet [8]. Our method
performs good results in occlusion areas, whereas other methods generate more obvious color shifts and blurry effects

Fig. 8 Qualitative comparison
of learned relative depth maps in
novel views between our full
model and different settings of
it. (a) RGB image. (b) Depth
map from our full model. (c)
Depth map without GVB. We
feed (a) into the generalized
model [46] and obtain the
relative depth as the supervision
of our model for scene geometry
estimation

w/oGVB(a) (b) (c)

Limitations Although we preserve the object boundary in
novel views well, our method is mainly limited by the basic
model parameters for handling the scenes with large number
of training views on ScanNet. The failure cases are shown
in Fig. 11. These two views are very different from training
views then suffer from artifacts.

5 Conclusion

In this paper, we propose RDNeRF, an end-to-end frame-
work built upon NeRF for dense free view synthesis in
real-world indoor scenes. RDNeRF improves the perfor-

mance of NeRF to render more photo-realistic novel views
and recover more accurate scene geometry. Specifically, we
adopt the implicit functions to learn the relative depth and
transform it to be the volume bound of rendering. With the
spatial context built by the geometric volume bound, we fur-
ther construct the internal relevance of camera rays by a
spatial self-attention module. We conduct extensive exper-
iments to evaluate our method and compare it with relative
approaches. Our method outperforms other methods in the
novel view synthesis and scene geometry extraction qualita-
tively and quantitatively.
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Fig. 9 Qualitative comparison
of novel view synthesis (top)
and rendered depth maps
(bottom) between our full model
and different settings of it. (a)
Our full model. (b) Without
GVB. (c) Original NeRF

Full w/o(a) (b) (c)

Fig. 10 Qualitative comparison of novel view synthesis between our full model and different settings of it on ScanNet

Fig. 11 Failure cases on
ScanNet
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