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Implementation Details. For the first stage, we select TiNeuVox-B
as the basic model which has 1603 X 6 neural voxels. The channel di-
mension of hidden layers is 256. The dimension of time embeddings
and voxel feature are set as 30. The frequency number of positional
encoding for neural voxels is 2. 2048 rays are sampled randomly for
a batch and it takes a totaly 20000 iterations during training. For the
second stage, the encoder part consists of four blocks, each block
down-samples the input feature as %X resolution. The decoder part
upsamples features from the encoder with time embeddings and
adds them with previous features of the encoder part. To enhance
the representation ability of the whole model, we introduce spatial
and channel attention before the last layer. It takes 800 epochs in
total to train the second stage. The perceptual loss is weighted by
0.1. For both stages, we select Adam as the optimizer and train two
models on one single GeForce RTX 3090 GPU.

Network architecture. Fig. 3 shows the details of adopted CNN
networks in the second stage.

Evaluation metric of volume density estimation. In this task,
volume density estimation is unsupervised learned from videos. We
focus on the structure similarity between our results and reference.
Then we design a novel metric to evaluate this performance. Firstly,
we slice the volume along three axes respectively and obtain three
sets of slice collections. Then we adopt the traditional SSIM to
estimate the structure similarity of each slice and average them to
get three values (ssim_1, ssim_2 and ssim_3). The final metric value
VSSIM (Density (SSIM)) is generated by:

ssim_1+ssim_2 + ssim_3
3 .

VSSIM = (1)

Comparison on each scene. Tab. 1 shows comparison on novel
view synthesis and volume density estimation in each scene.

Qualitative comparison on multiple time stamps. Tab. 1 shows
a qualitative comparison between the multi-time-stamp scheme and
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Fig. 1. Details of the metric of volume density estimation.
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Fig. 2. Qualitative comparison between the multi-time-stamp scheme and
the temporal interpolation scheme on novel view synthesis.

the temporal interpolation scheme on novel view synthesis. Our
method generates cleaner results.
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Table 1. Comparison on novel view synthesis and volume density estimation. ‘Ours’: Our results of the first stage. ‘Ours_r": Our results of the overall pipeline.

Scene PSNRT SSIMT LPIPS| Density (SSIM)T

PINF TiNeuVox Ours Ours_r | PINF TiNeuVox Ours Ours_r | PINF TiNeuVox Ours Ours_r | PINF TiNeuVox Ours

Scalar | 31.41 26.74 32.03 32.29 | 95.17 93.83 9430 = 95.35 | 23.27 25.66 29.21 = 22.52 - - -

Sphere | 28.85 22.93 31.27 30.79 | 85.06 73.37 88.09  86.99 7.03 10.48 6.81 5.25 - - -
Double | 16.57 24.60 28.72  28.87 | 88.22 79.40 90.74  89.56 9.94 10.94 3.66 3.03 4.01 94.64 95.43
Yellow | 19.01 27.99 32.50 3247 | 91.29 93.02 96.06  95.96 8.30 3.04 2.48 2.06 18.92 97.72 98.23
Fire 17.45 28.61 32.97 33.29 | 90.91 92.41 95.83  95.36 5.30 3.27 4.57 2.95 27.40 95.45 97.51
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Fig. 3. Details of the encoder-decoder framework.



