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Abstract

Neural implicit methods have achieved high-quality 3D
object surfaces under slight specular highlights. However,
high specular reflections (HSR) often appear in front of tar-
get objects when we capture them through glasses. The
complex ambiguity in these scenes violates the multi-view
consistency, then makes it challenging for recent methods
to reconstruct target objects correctly. To remedy this is-
sue, we present a novel surface reconstruction framework,
NeuS-HSR, based on implicit neural rendering. In NeuS-
HSR, the object surface is parameterized as an implicit
signed distance function (SDF). To reduce the interference
of HSR, we propose decomposing the rendered image into
two appearances: the target object and the auxiliary plane.
We design a novel auxiliary plane module by combining
physical assumptions and neural networks to generate the
auxiliary plane appearance. Extensive experiments on syn-
thetic and real-world datasets demonstrate that NeuS-HSR
outperforms state-of-the-art approaches for accurate and
robust target surface reconstruction against HSR.

1. Introduction

Reconstructing 3D object surfaces from multi-view im-
ages is a challenging task in computer vision and graph-
ics. Recently, NeuS [43] combines the surface render-
ing [3, 12, 34, 49] and volume rendering [8, 29], for recon-
structing objects with thin structures and achieves good per-
formance on the input with slight specular reflections. How-
ever, when processing the scenes under high specular reflec-
tions (HSR), NeuS fails to recover the target object surfaces,
as shown in the second row of Fig. 1. High specular reflec-
tions are ubiquitous when we use a camera to capture the
target object through glasses. As shown in the first row of
Fig. 1, in the captured views with HSR, we can recognize
the virtual image in front of the target object. The virtual
image introduces the photometric variation on the object
surface visually, which degrades the multi-view consistency

View 1 View 27 View 56… …

Su
pe

rv
is

io
n

N
eu

S
N

eu
S-

H
SR

Figure 1. 3D object surface reconstruction under high specular
reflections (HSR). Top: A real-world scene captured by a mobile
phone. Middle: The state-of-the-art method NeuS [43] fails to re-
construct the target object (i.e., the Buddha). Bottom: We propose
NeuS-HSR, which recovers a more accurate target object surface
than NeuS.

and encodes extreme ambiguities for rendering, then con-
fuses NeuS to reconstruct the reflected objects instead of
the target object.

To adapt to the HSR scenes, one intuitive solution is
firstly applying reflection removal methods to reduce HSR,
then reconstructing the target object with the enhanced tar-
get object appearance as the supervision. However, most
recent single-image reflection removal works [4, 9, 23, 24,
26, 39] need the ground-truth background or reflection as
supervision, which is hard to be acquired. Furthermore, for
these reflection removal methods, testing scenes should be
present in the training sets, which limits their generaliza-
tion. These facts demonstrate that explicitly using the re-
flection removal methods to enhance the target object ap-
pearance is impractical. A recent unsupervised reflection
removal approach, NeRFReN [18] decomposes the ren-
dered image into reflected and transmitted parts by implicit
representations. However, it is limited by constrained view
directions and simple planar reflectors. When we apply it to
scenes for multi-view reconstruction, as Fig. 3 presents, it
takes the target object as the content in the reflected image
and fails to generate the correct transmitted image for target
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Figure 2. NeuS-HSR. High specular re�ections (HSR) make NeuS
tend to reconstruct the re�ected object in HSR. NeuS-HSR phys-
ically decomposes the rendered image into the target object and
auxiliary plane parts, which encourages NeuS to focus on the tar-
get object.

object recovery.
The two-stage intuitive solution struggles in our task

as discussed above. To tackle this issue, we consider a
more effective decomposition strategy than NeRFReN, to
enhance the target object appearance for accurate surface
reconstruction in one stage. To achieve our goal, we con-
struct the following assumptions:

Assumption 1 A scene that suffers from HSR can be de-
composed into the target object and planar re�ector com-
ponents. Except for the target object, HSR and most other
contents in a view are re�ected and transmitted through the
planar re�ectors (i.e., glasses).

Assumption 2 Planar re�ectors intersect with the camera
view direction since all view direction vectors generally
point to the target object and pass through planar re�ec-
tors.

Based on the above physical assumptions, we propose
NeuS-HSR, a novel object reconstruction framework to re-
cover the target object surface against HSR from a set of
RGB images. ForAssumption 1, as Fig. 2 shows, we de-
sign an auxiliary plane to represent the planar re�ector since
we aim to enhance the target object appearance through it.
With the aid of the auxiliary plane, we faithfully separate
the target object and auxiliary plane parts from the super-
vision. For the target object part, we follow NeuS [43]
to generate the target object appearance. For the auxiliary
plane part, we design an auxiliary plane module with the
view direction as the input forAssumption 2, by utilizing
neural networks to generate attributes (including the nor-
mal and position) of the view-dependent auxiliary plane.
When the auxiliary plane is determined, we acquire the aux-
iliary plane appearance based on the re�ection transforma-
tion [16] and neural networks. Finally, we add two appear-
ances and then obtain the rendered image, which is super-
vised by the captured image for one-stage training.

We conduct a series of experiments to evaluate NeuS-
HSR. The experiments demonstrate that NeuS-HSR is su-
perior to other state-of-the-art methods on the synthetic
dataset and recovers high-quality target objects from HSR-
effect images in real-world scenes.

Figure 3. Decomposition of NeRFReN [18]. NeRFReN fails to
separate specular re�ections and the target object appearance in
this view.

To summarize, our main contributions are as follows:

• We propose to recover the target object surface, which
suffers from HSR, by separating the target object and aux-
iliary plane parts of the scene.

• We design an auxiliary plane module to generate the ap-
pearance of the auxiliary plane part physically to enhance
the appearance of the target object part.

• Extensive experiments on synthetic and real-world scenes
demonstrate that our method reconstructs more accurate
target objects than other state-of-the-art methods quanti-
tatively and qualitatively.

2. Related Works

2.1. Traditional Surface Reconstruction

The classical multi-view surface reconstruction methods
mainly consist of two categories: photometric stereo [5, 6,
19,47] and multi-view stereo [11,13–15,35–37] reconstruc-
tion. The photometric stereo reconstruction is limited by the
strict experimental environment. For the multi-view stereo
reconstruction, the input images are captured around the tar-
get object in common scenes. The early multi-view stereo
methods [11, 15, 35, 36] focus on the object surfaces with
diffuse materials. They all obey the Lambertian assumption
that the same detected region of the object surfaces has little
change in all views. However, obvious specular re�ections
often occur on objects in real-world scenes,e.g., the high-
light. The Lambertian assumption no longer holds in real-
world scenes with obvious specular re�ections. The widely-
used Structure From Motion (SFM) methods [33, 41, 46] is
designed to calibrate the camera and produce a sparse depth
map at each viewpoint �rstly. Then the object surface can
be acquired by Poisson Surface Reconstruction [22] with
depth fusion. However, the quality of the output surface is
easily affected by the feature point detection, and surface
areas without rich textures on the target object always have
artifacts or empty holes. In this work, we focus on the neu-
ral implicit method to achieve accurate 3D object surfaces
in more realistic scenarios (i.e., non-Lambertian surfaces).

2.2. Neural Implicit Surface Rendering

Implicit representations based on neural networks have
achieved promising results on novel view synthesis [25,

2
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Figure 4. Pipeline of NeuS-HSR. The sampled pointsp and the view directionv are fed into the target object path and the plane path
respectively. In the object path, the implicit SDFf is generated by the head neural networks. The surface module takesf , p, andv as the
input, producing the rendering weightsw. In the plane path, the re�ection module generates the plane normaln r , 3D locationsp r , and the
rendering weightswr of the auxiliary plane fromp andv . Finally, we acquire two appearances by the appearance functionFc and volume
rendering.

27, 29, 38, 44] and 3D reconstruction [7, 10, 30, 31, 40, 43,
45, 48, 49]. They have characteristics that classical meth-
ods do not have, including �exible resolution and natural
global consistency. Surface rendering based on the differen-
tiable ray casting is applied for surface reconstruction with
different forms of implicit shape representations, such as
the occupancy function [32] and signed distance function
(SDF) [49]. IDR [49] extracts surface points on the ob-
ject surface with the zero-level set of SDF representations,
and utilizes neural network gradients to solve a differen-
tiable rendering formulation. UNISURF [31], VolSDF [48]
and NeuS [43] learn the implicit surface function by in-
troducing the volume rendering scheme [29], to improve
the surface reconstruction quality from captured images.
NeuralWarp [7] is a two-stage method for re�ning the ba-
sic model (e.g., VolSDF). NeRS [50] focuses on learning
the appearance of object surfaces by introducing the Phong
model [20, 21, 42]. It uses a canonical sphere to represent
the object surface and learns the object texture with pre-
requisite masks from a sparse set of images, but it mainly
deals with objects with re�ective surfaces and produces the
object surface without �ne details. In contrast with these
works, we propose to extend the object surface reconstruc-
tion to more challenging HSR scenes in one stage. We aim
to correctly recover the object surface through glasses in-
stead of the re�ective surface. Our method achieves much
better reconstruction accuracy and robustness than previous
works in HSR scenes.

3. Method

In this work, we focus on reconstructing the object sur-
faces in high specular re�ection (HSR) scenes. As men-
tioned in the introduction section, HSR encodes non-target
object information, resulting in a low-quality target object
surface. To tackle HSR scenes, we introduce a novel object
surface reconstruction method, NeuS-HSR, which is based

on the implicit neural rendering. The pipeline of NeuS-HSR
is shown in Fig. 4.

Speci�cally, we decompose an HSR scene into two com-
ponents: the target object and the auxiliary plane. To ren-
der the target object appearance, we adopt the scheme of
NeuS and pack it as a surface module. To render the auxil-
iary plane appearance, we design an auxiliary plane module
based on the re�ection transformation [16] and multi-layer
perceptrons (MLPs). Finally, we apply a linear summation
to fuse two appearances to obtain the rendered image, which
receives supervision from the captured image in a view. In
the following, we introduce NeuS-HSR in three parts, in-
cluding the surface module (Sec. 3.1), the auxiliary plane
module (Sec. 3.2), and the rendering process (Sec. 3.3).

3.1. Surface Module

We apply NeuS [43] to render the target object appear-
ance. Speci�cally, NeuS builds an unbiased and occlusion-
aware weight functionw based on the implicit SDFf :
R3 ! R on each camera rayhs. Firstly, w is de�ned as:

w(t) = T(t)� (t); T(t) = exp
�

�
Z t

0
� (u)du

�
: (1)

wheret 2 R is the depth value alonghs, then� (t) is con-
structed by:

� (t) = max

 
� d� s

dt (f (p(t)))
� s(f (p(t)))

; 0

!

: (2)

where the object surfaceS can be modeled by a zero-level
set of the signed distance at the pointp: S = f p 2
R3jf (p) = 0 g. The logistic density distribution� S (p) =
se� sp =(1 + e� sp )2, which is the derivative of the Sigmoid
function� s(p) = (1 + e� sp ) � 1

. 1=s is the standard devia-
tion of � S (p).

The construction ofw is the key contribution of NeuS. It
connects the implicit SDF and the volume rendering prop-
erly to handle complex object structures. The camera ray
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