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Abstract

Neural implicit methods have achieved high-quality 3D
object surfaces under slight specular highlights. However,
high specular reflections (HSR) often appear in front of tar-
get objects when we capture them through glasses. The
complex ambiguity in these scenes violates the multi-view
consistency, then makes it challenging for recent methods
to reconstruct target objects correctly. To remedy this is-
sue, we present a novel surface reconstruction framework,
NeuS-HSR, based on implicit neural rendering. In NeuS-
HSR, the object surface is parameterized as an implicit
signed distance function (SDF). To reduce the interference
of HSR, we propose decomposing the rendered image into
two appearances: the target object and the auxiliary plane.
We design a novel auxiliary plane module by combining
physical assumptions and neural networks to generate the
auxiliary plane appearance. Extensive experiments on syn-
thetic and real-world datasets demonstrate that NeuS-HSR
outperforms state-of-the-art approaches for accurate and
robust target surface reconstruction against HSR.

1. Introduction

Reconstructing 3D object surfaces from multi-view im-
ages is a challenging task in computer vision and graph-
ics. Recently, NeuS [43] combines the surface render-
ing [3, 12,34,49] and volume rendering [8, 29], for recon-
structing objects with thin structures and achieves good per-
formance on the input with slight specular reflections. How-
ever, when processing the scenes under high specular reflec-
tions (HSR), NeusS fails to recover the target object surfaces,
as shown in the second row of Fig. 1. High specular reflec-
tions are ubiquitous when we use a camera to capture the
target object through glasses. As shown in the first row of
Fig. 1, in the captured views with HSR, we can recognize
the virtual image in front of the target object. The virtual
image introduces the photometric variation on the object
surface visually, which degrades the multi-view consistency
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Figure 1. 3D object surface reconstruction under high specular
reflections (HSR). Top: A real-world scene captured by a mobile
phone. Middle: The state-of-the-art method NeuS [43] fails to re-
construct the target object (i.e., the Buddha). Bottom: We propose
NeuS-HSR, which recovers a more accurate target object surface
than NeusS.

and encodes extreme ambiguities for rendering, then con-
fuses NeuS to reconstruct the reflected objects instead of
the target object.

To adapt to the HSR scenes, one intuitive solution is
firstly applying reflection removal methods to reduce HSR,
then reconstructing the target object with the enhanced tar-
get object appearance as the supervision. However, most
recent single-image reflection removal works [4, 9, 23, 24,
26, 39] need the ground-truth background or reflection as
supervision, which is hard to be acquired. Furthermore, for
these reflection removal methods, testing scenes should be
present in the training sets, which limits their generaliza-
tion. These facts demonstrate that explicitly using the re-
flection removal methods to enhance the target object ap-
pearance is impractical. A recent unsupervised reflection
removal approach, NeRFReN [18] decomposes the ren-
dered image into reflected and transmitted parts by implicit
representations. However, it is limited by constrained view
directions and simple planar reflectors. When we apply it to
scenes for multi-view reconstruction, as Fig. 3 presents, it
takes the target object as the content in the reflected image
and fails to generate the correct transmitted image for target
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Figure 3. Decomposition of NeRFReN [18]. NeRFReN fails to
separate specular re ections and the target object appearance in

Figure 2. NeuS-HSR. High specular re ections (HSR) make NeuS ~-""
this view.

tend to reconstruct the re ected object in HSR. NeuS-HSR phys-

ically decomposes the rendered image into the target object and To summarize, our main contributions are as follows:
auxiliary plane parts, which encourages NeusS to focus on the tar-

get object. » We propose to recover the target object surface, which
. suffers from HSR, by separating the target object and aux-
object recovery. iliary plane parts of the scene.

The two-stage intuitive solution struggles in our task
as discussed above. To tackle this issue, we consider a We design an auxiliary plane module to generate the ap-
more effective decomposition strategy than NeRFReN, to pearance of the auxiliary plane part physically to enhance
enhance the target object appearance for accurate surface the appearance of the target object part.
reconstruction in one stage. To achieve our goal, we con-

. . » Extensive experiments on synthetic and real-world scenes
struct the following assumptions:

demonstrate that our method reconstructs more accurate
Assumption 1 A scene that suffers from HSR can be de- target objects than other state-of-the-art methods quanti-
composed into the target object and planar re ector com-  tatively and qualitatively.

ponents. Except for the target object, HSR and most other

contents in a view are re ected and transmitted through the 2 Related Works

planar re ectors {.e., glasses). - _
2.1. Traditional Surface Reconstruction
Assumption 2 Planar re ectors intersect with the camera

view direction since all view direction vectors generally

point to the target object and pass through planar re ec- mainly consist of two categories: photometric stereo [5, 6,
tors ,47] and multi-view stereo [11,13-15,35-37] reconstruc-

tion. The photometric stereo reconstruction is limited by the

Based on the above physical assumptions, we proposestrict experimental environment. For the multi-view stereo
NeuS-HSR, a novel object reconstruction framework to re- reconstruction, the input images are captured around the tar-
cover the target object surface against HSR from a set ofget object in common scenes. The early multi-view stereo
RGB images. FoAssumption 1, as Fig. 2 shows, we de- methods [11, 15, 35, 36] focus on the object surfaces with
sign an auxiliary plane to represent the planar re ector since diffuse materials. They all obey the Lambertian assumption
we aim to enhance the target object appearance through itthat the same detected region of the object surfaces has little
With the aid of the auxiliary plane, we faithfully separate change in all views. However, obvious specular re ections
the target object and auxiliary plane parts from the super-often occur on objects in real-world scenegy, the high-
vision. For the target object part, we follow NeuS [43] light. The Lambertian assumption no longer holds in real-
to generate the target object appearance. For the auxiliaryworld scenes with obvious specular re ections. The widely-
plane part, we design an auxiliary plane module with the used Structure From Motion (SFM) methods [33,41,46] is
view direction as the input foAssumption 2, by utilizing designed to calibrate the camera and produce a sparse depth
neural networks to generate attributes (including the nor- map at each viewpoint rstly. Then the object surface can
mal and position) of the view-dependent auxiliary plane. be acquired by Poisson Surface Reconstruction [22] with
When the auxiliary plane is determined, we acquire the aux-depth fusion. However, the quality of the output surface is
iliary plane appearance based on the re ection transforma-easily affected by the feature point detection, and surface
tion [16] and neural networks. Finally, we add two appear- areas without rich textures on the target object always have
ances and then obtain the rendered image, which is superartifacts or empty holes. In this work, we focus on the neu-
vised by the captured image for one-stage training. ral implicit method to achieve accurate 3D object surfaces

We conduct a series of experiments to evaluate NeuS-in more realistic scenario €., non-Lambertian surfaces).
HSR. The experiments demonstrate that NeuS-HSR is su- - .
perior to other state-of-the-art methods on the syntheticz'z' Neural Implicit Surface Rendering
dataset and recovers high-quality target objects from HSR-  Implicit representations based on neural networks have
effect images in real-world scenes. achieved promising results on novel view synthesis [25,

The classical multi-view surface reconstruction methods



Figure 4. Pipeline of NeuS-HSR. The sampled pomtand the view directiov are fed into the target object path and the plane path
respectively. In the object path, the implicit SDRs generated by the head neural networks. The surface moduleftageandv as the
input, producing the rendering weighs In the plane path, the re ection module generates the plane narma&D locations, , and the
rendering weightsv, of the auxiliary plane fronp andv. Finally, we acquire two appearances by the appearance furk&tiand volume
rendering.

, 29, 38, 44] and 3D reconstruction [7, 10, 30, 31, 40, 43, on the implicit neural rendering. The pipeline of NeuS-HSR

,48,49]. They have characteristics that classical meth-is shown in Fig. 4.
ods do not have, including exible resolution and natural Speci cally, we decompose an HSR scene into two com-
global consistency. Surface rendering based on the differenponents: the target object and the auxiliary plane. To ren-
tiable ray casting is applied for surface reconstruction with der the target object appearance, we adopt the scheme of
different forms of implicit shape representations, such as NeuS and pack it as a surface module. To render the auxil-
the occupancy function [32] and signed distance function iary plane appearance, we design an auxiliary plane module
(SDF) [49]. IDR [49] extracts surface points on the ob- based on the re ection transformation [16] and multi-layer
ject surface with the zero-level set of SDF representations,perceptrons (MLPs). Finally, we apply a linear summation
and utilizes neural network gradients to solve a differen- to fuse two appearances to obtain the rendered image, which
tiable rendering formulation. UNISURF [31], VOISDF [48] receives supervision from the captured image in a view. In
and NeuS [43] learn the implicit surface function by in- the following, we introduce NeuS-HSR in three parts, in-
troducing the volume rendering scheme [29], to improve cluding the surface module (Sec. 3.1), the auxiliary plane
the surface reconstruction quality from captured images. module (Sec. 3.2), and the rendering process (Sec. 3.3).
NeuralWarp [7] is a two-stage method for re ning the ba-
sic model €.g, VOISDF). NeRS [50] focuses on learning 3.1. Surface Module

the appearance of object surfaces by introducing the Phong . :
model [20, 21, 42]. It uses a canonical sphere to represent We apply NeuS [ 5] to render the target object appear

. . . ance. Speci cally, NeuS builds an unbiased and occlusion-
the object surface and learns the object texture with pre- P Y

requisite masks from a sparse set of images, but it mainlyaware weight functiow based on the implicit SDF

; . . . ’ R®! R oneach camera rdys. Firstly,w is de ned as:
deals with objects with re ective surfaces and produces the A5 % ‘
object surface without ne details. In contrast with these w(t) = T(t) (t);T(t)=exp (wdu : (1)
works, we propose to extend the object surface reconstruc- 0
tion to more challenging HSR scenes in one stage. We aimwheret 2 R is the depth value alonlgs, then (t) is con-

to correctly recover the object surface through glasses in-structed by: |

stead of the re ective surface. Our method achieves much d_s(f (p(1)) ’
better reconstruction accuracy and robustness than previous (t)=max —d 2 . (2)
works in HSR scenes. SUCIO)

where the object surfac® can be modeled by a zero-level
3. Method set of the signed distance at the popit S = fp 2

R3jf (p) = 0g. The logistic density distributions (p) =
In this work, we focus on reconstructing the object sur- S& *=(1+ e )2, which is the derivative of the Sigmoid
faces in high specular re ection (HSR) scenes. As men- function s(p)=(1+ e sp) ' 1=sis the standard devia-
tioned in the introduction section, HSR encodes non-targettion of s(p).
object information, resulting in a low-quality target object The construction olv is the key contribution of NeusS. It
surface. To tackle HSR scenes, we introduce a novel objeciconnects the implicit SDF and the volume rendering prop-
surface reconstruction method, NeuS-HSR, which is basederly to handle complex object structures. The camera ray
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