
DiffFR: Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body
Control - Supplementary
ZHEHAO LI, University of Science and Technology of China, China
QINGYU XU, University of Science and Technology of China, China
XIAOHAN YE, TMCC, College of Computer Science, Nankai University, China
BO REN∗, TMCC, College of Computer Science, Nankai University, China
LIGANG LIU, University of Science and Technology of China, China

ACM Reference Format:
Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu. 2023. DiffFR:
Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body Control -
Supplementary. ACM Trans. Graph. 42, 6, Article 1 (December 2023), 6 pages.
https://doi.org/10.1145/3618318

In this supplementary, we providemore technical details of the gradi-
ent computation of our differentiable SPH-based fluid-rigid coupling
simulator and experiment settings. We hope this supplementary
material to be self-contained and helpful for implementation.

1 COMPUTATION DETAILS OF GRADIENTS OF RIGID
BODY DYNAMICS

For rigid body dynamics, we adopt the semi-implicit integration:

𝑣𝑛+1 = 𝑣𝑛 + Δ𝑡M−1 𝑓 𝑛, (1)

𝑥𝑛+1 = 𝑥𝑛 + Δ𝑡𝑣𝑛+1, (2)

𝜔𝑛+1 = 𝜔𝑛 + Δ𝑡 (I𝑛)−1 (𝐿𝑛 × 𝜔𝑛 + 𝜏𝑛), (3)

𝑞𝑛+1 = normalize(𝑞𝑛 + Δ𝑡

2 ([0, 𝜔
𝑛+1] ⊗ 𝑞𝑛)), (4)

where Δ𝑡 is the time step, M a positive diagonal mass matrix, 𝑓 and
𝜏 the external force and torque, I and 𝐿 = I ·𝜔 the inertia tensor and
angular momentum of the rigid body, respectively. In forward-mode
differentiation, given d𝑥𝑛

d𝑠0 ,
d𝑣𝑛
d𝑠0 ,

d𝑞𝑛
d𝑠0 ,

d𝜔𝑛

d𝑠0 from the last time step, we
need to compute the gradient of rigid body state s𝑛+1R at time step
𝑛 + 1 with respect to the initial state variable s0R at time step 0 in
a simulation trajectory, where 𝑠0 ∈ s0R can represent 𝑣0, 𝜔0, 𝑥0, 𝑞0,
etc. Then the semi-implicit integration of rigid body dynamics is
backpropagated with the chain rule as follows:
∗The corresponding author

Authors’ addresses: Zhehao Li, University of Science and Technology of China, China,
zhehaoli@mail.ustc.edu.cn; Qingyu Xu, University of Science and Technology of China,
China, liamxu123@mail.ustc.edu.cn; Xiaohan Ye, TMCC, College of Computer Science,
Nankai University, China, yexiaohan@mail.nankai.edu.cn; Bo Ren, TMCC, College of
Computer Science, Nankai University, China, rb@nankai.edu.cn; Ligang Liu, University
of Science and Technology of China, China, lgliu@ustc.edu.cn.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
© 2023 Copyright held by the owner/author(s). Publication rights licensed to ACM.
0730-0301/2023/12-ART1 $15.00
https://doi.org/10.1145/3618318

d𝑣𝑛+1

d𝑠0
=

d𝑣𝑛

d𝑠0
+ Δ𝑡M−1 d𝑓

𝑛

d𝑠0
, (5)

d𝑥𝑛+1

d𝑠0
=

d𝑥𝑛

d𝑠0
+ Δ𝑡 d𝑣

𝑛+1

d𝑠0
, (6)

d𝜔𝑛+1

d𝑠0
=

d𝜔𝑛

d𝑠0
+ Δ𝑡

[
d(I𝑛)−1
d𝑠0

(𝐿𝑛 × 𝜔𝑛 + 𝜏𝑛)

+(I𝑛)−1 (d(𝐿
𝑛 × 𝜔𝑛)
d𝑠0

+ d𝜏𝑛

d𝑠0
)
]
, (7)

d𝑞𝑛+1

d𝑠0
=

d𝑞𝑛+1

d𝑞

[
d𝑞𝑛

d𝑠0
+ Δ𝑡

2
d([0, 𝜔𝑛+1] ⊗ 𝑞𝑛)

d𝑠0

]
. (8)

where 𝑞 B 𝑞𝑛 + Δ𝑡
2 ([0, 𝜔

𝑛+1] ⊗𝑞𝑛) is the updated quaternion before
the normalization operation.
Now let’s dive into each gradient term in the above equations

for implementation. First, we consider the gradient involving the
inertia tensor I. Note that I is the function of the spatial orientation
of rigid bodies since I𝑛 = 𝑅𝑛I0𝑅𝑛⊤ with 𝑅𝑛 = 𝑅𝑛 (𝑞𝑛) (superscript 𝑛
is the 𝑛th time step) as the rotation matrix, so we also need to take
the derivative of I𝑛 into account. To compute d(I𝑛)−1

d𝑠0 (𝐿
𝑛 ×𝜔𝑛 +𝜏𝑛),

we define Γ B 𝐿𝑛 × 𝜔𝑛 + 𝜏𝑛 :

d (I𝑛)−1

d𝑠0
Γ =

d
(
𝑅𝑛

(
I0
)−1 (𝑅𝑛)⊤)
d𝑠0

Γ

=
d𝑅𝑛

d𝑠0
(
I0
)−1 (

𝑅𝑛
)⊤ Γ + 𝑅𝑛 (

I0
)−1 d (𝑅𝑛)⊤

d𝑠0
Γ.

(9)

Since we already have d𝑞𝑛
d𝑠0 , to relate the gradient involving the

rotational matrix d𝑅𝑛
d𝑠0 with d𝑞𝑛

d𝑠0 , we need the following formula
introduced in [Kugelstadt and Schömer 2016]:

𝜕

𝜕𝑞
𝑅(𝑞)𝒑 =

𝜕

𝜕𝑞

(
2𝒒𝑞⊤𝒑 + 𝑞20𝒑 − 𝒑𝒒

⊤𝒒 + 2𝑞0𝒒 × 𝒑
)

(10)

where 𝒑 ∈ R3 is an arbitrary vector, and quaternion 𝑞 is represented
as 𝑞 = (𝑞0, 𝒒) with 𝑞0 ∈ R, 𝒒 ∈ R3. Then Eq. (9) can be solved as:

d (I𝑛)−1

d𝑠0
Γ =

(
d𝑅𝑛

d𝑞0
(
I0
)−1 (

𝑅𝑛
)⊤ Γ) d𝑞𝑛

d𝑠0

+ 𝑅𝑛
(
I0
)−1 (

d (𝑅𝑛)⊤

d𝑞0
Γ

)
d𝑞𝑛

d𝑠0
. (11)

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

HTTPS://ORCID.ORG/0000-0003-2464-4858
HTTPS://ORCID.ORG/0000-0001-8236-3451
HTTPS://ORCID.ORG/0000-0002-3836-4120
HTTPS://ORCID.ORG/0000-0001-8179-9122
HTTPS://ORCID.ORG/0000-0003-4352-1431
https://doi.org/10.1145/3618318
https://orcid.org/0000-0003-2464-4858
https://orcid.org/0000-0001-8236-3451
https://orcid.org/0000-0002-3836-4120
https://orcid.org/0000-0001-8179-9122
https://orcid.org/0000-0003-4352-1431
https://doi.org/10.1145/3618318

1:2 • Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu

Next in Eq. (7), to compute d(𝐿𝑛×𝜔𝑛)
d𝑠0 , we have:

d (I𝑛𝜔𝑛 × 𝜔𝑛)
d𝑠0

=
[
I𝑛𝜔𝑛

] d𝜔𝑛

d𝑠0
+

[
𝜔𝑛

]⊤ dI𝑛𝜔𝑛

d𝑠0

=
[
I𝑛𝜔𝑛

] d𝜔𝑛

d𝑠0
+

[
𝜔𝑛

]⊤ (
I𝑛 d𝜔

𝑛

d𝑠0
+ dI𝑛

d𝑠0
𝜔𝑛

)
,

(12)

where dI𝑛
d𝑠0𝜔

𝑛 can also be computed the same way using gradient
of rotational matrix as introduced above.
Then we move to Eq. (8), 𝑞𝑛+1 = 𝑞

∥𝑞 ∥ . Therefore, we have:

d𝑞𝑛+1

d𝑞 =
1
∥𝑞∥ I4 −

1
∥𝑞∥2

𝑞

∥𝑞∥𝑞
⊤

=
1
∥𝑞∥

(
I4 − 𝑞𝑞⊤

)
,

(13)

where I4 is the 4 × 4 identity matrix.
Finally in Eq. (8), to compute d([0,𝜔𝑛+1]⊗𝑞𝑛)

d𝑠0 , we have:

d([0, 𝜔𝑛+1] ⊗ 𝑞𝑛)
d𝑠0

=
𝜕([0, 𝜔𝑛+1] ⊗ 𝑞𝑛)

𝜕𝜔𝑛+1
d𝜔𝑛+1

d𝑠0

+ 𝜕([0, 𝜔
𝑛+1] ⊗ 𝑞𝑛)
𝜕𝑞𝑛

d𝑞𝑛

d𝑠0
,

(14)

in which we need to use the derivative of quaternion productions.
As introduced in [Kugelstadt and Schömer 2016], by representing
a quaternion 𝑞 as 𝑞 = (𝑞0, 𝒒), the quaternion production can be
written as the form of matrix product:

𝑝 = Q̂ (𝑞)𝑝 =

(
𝑞0 −𝒒𝑇
𝒒 𝑞0I3 − [𝒒]×

) (
𝑝0
𝒑

)
, (15)

𝑝 = Q(𝑝)𝑞 =

(
𝑝0 −𝒑𝑇
𝒑 𝑝0I3 + [𝒑]×

) (
𝑞0
𝒒

)
, (16)

where I3 is the 3 × 3 identity matrix. Then we can readily compute
the gradient of the quaternion product using matrix calculus to
obtain 𝜕 ([0,𝜔𝑛+1]⊗𝑞𝑛)

𝜕𝜔𝑛+1 and 𝜕 ([0,𝜔𝑛+1]⊗𝑞𝑛)
𝜕𝑞𝑛 .

To sum up, we have explained each term in the gradient computa-
tion equations. However, in Eqs. (5) and (7), we need to compute the
gradient of external forces 𝑓 𝑛 and torques 𝜏𝑛 to rigid body veloci-
ties. In a fluid-rigid coupled system, 𝑓 𝑛, 𝜏𝑛 comes from the coupling
forces between the fluid and the rigid body, so their gradients are
introduced in the next section.

2 COMPUTATION DETAILS OF GRADIENTS OF
SPH-BASED TWO-WAY FLUID-RIGID COUPLING

In this section, we introduce the computation details of the gradient
of coupling forces in the SPH-based two-way coupled fluid-rigid
system. We develop our differentiable two-way SPH-based fluid-
rigid coupling simulator based on DFSPH [Bender and Koschier
2015, 2017] and [Akinci et al. 2012]. Here we follow the convention
that for the gradient of a vector function 𝑓 ∈ R𝑚 w.r.t. a vector
variable 𝑥 ∈ R𝑛 , the 𝑖th row of 𝜕𝑓𝜕𝑥 ∈ R

𝑚×𝑛 is [𝜕𝑓𝑖𝜕𝑥1
,
𝜕𝑓𝑖
𝜕𝑥2

, ...
𝜕𝑓𝑖
𝜕𝑥𝑛
],

and the gradient of another vector function 𝑔(𝑓 (𝑥)) ∈ R𝑘 w.r.t. 𝑥 is
written as 𝜕𝑔

𝜕𝑥 =
𝜕𝑔

𝜕𝑓

𝜕𝑓
𝜕𝑥 ∈ R

𝑘×𝑛 .
First, let’s recall the forward simulation formulas of the proposes

fluid-solid coupling method in [Akinci et al. 2012], where the sur-
faces of rigid body R are sampled with boundary particles, and

Table 1. Definition of symbols

Symbol Meaning
R rigid body

𝑣𝑛, 𝜔𝑛 linear and angular velocity of R at time step n
𝑥𝑛, 𝑞𝑛 position and quaternion of R at time step 𝑛
𝑠𝑛 state of R at time step 𝑛, 𝑠𝑛 ∈ {𝑥𝑛, 𝑣𝑛, 𝜔𝑛, 𝑞𝑛}
𝑓 𝑛 net fluid-rigid coupling force of R at time step 𝑛
𝜏𝑛 net fluid-rigid coupling torque of R at time step 𝑛
𝑏 𝑗 𝑗 th rigid body particle
𝑓𝑖 𝑖th fluid particle

𝐹𝑏 𝑗←𝑓𝑖 particle-pair fluid-rigid coupling force applied from 𝑓𝑖 to 𝑏 𝑗
𝜌0 fluid rest density

𝑝 𝑓𝑖 , 𝜌 𝑓𝑖 pressure and density of fluid particle 𝑓𝑖
𝑥𝑏 𝑗 , 𝑣𝑏 𝑗 position and velocity of rigid particle 𝑏 𝑗
𝑠𝑛
𝑏 𝑗

state of 𝑏 𝑗 at time step 𝑛, 𝑠𝑏 𝑗 ∈ {𝑥𝑏 𝑗 , 𝑣𝑏 𝑗 }
𝑚𝑓𝑖 mass of fluid particle 𝑓𝑖
𝑉𝑏 𝑗 volume of rigid particle 𝑏 𝑗

𝑊,𝑊𝑖 𝑗 SPH kernel function
𝑘DFSPH
𝑓𝑖

DFSPH precomputed factor of fluid particle 𝑓𝑖

the coupling force and torque applied to R are written as double
summations of rigid body particles and fluid particles:

𝑓 𝑛 =
∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝐹𝑏 𝑗←𝑓𝑖 , 𝜏𝑛 =
∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝜏𝑏 𝑗←𝑓𝑖 , (17)

where the pressure force 𝐹𝑏 𝑗←𝑓𝑖 applied from a fluid particle 𝑓𝑖 to a
boundary particle 𝑏 𝑗 is derived as:

𝐹𝑏 𝑗←𝑓𝑖 = −𝐹𝑓𝑖←𝑏 𝑗 =𝑚𝑓𝑖Ψ𝑏 𝑗 (𝜌0)
(
𝑝 𝑓𝑖

𝜌0𝜌 𝑓𝑖

)
∇𝑊𝑖 𝑗 , (18)

where Ψ𝑏 𝑗 = 𝜌0𝑉𝑏 𝑗 , thus the formula above can be simplified as:

𝐹𝑏 𝑗←𝑓𝑖 =𝑚𝑓𝑖𝑉𝑏 𝑗

(
𝑝 𝑓𝑖

𝜌 𝑓𝑖

)
∇𝑊𝑖 𝑗 . (19)

To develop a differentiable SPH-based fluid-rigid coupling sim-
ulator, we differentiate Eq. (19) and compute

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑥𝑏𝑗
and

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑏𝑗

based on the chain rule:
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑥𝑏 𝑗

=𝑚𝑓𝑖𝑉𝑏 𝑗

©­­«
1
𝜌 𝑓𝑖
∇𝑊𝑖 𝑗

𝜕

(
𝑝𝑓𝑖
𝜌𝑓𝑖

)
𝜕𝑥𝑏 𝑗

+
𝑝 𝑓𝑖

𝜌 𝑓𝑖
∇2𝑊𝑖 𝑗

ª®®¬ , (20)

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣𝑏 𝑗

=𝑚𝑓𝑖𝑉𝑏 𝑗

(
1
𝜌 𝑓𝑖
∇𝑊𝑖 𝑗

𝜕𝑝 𝑓𝑖

𝜕𝑣𝑏 𝑗

)
, (21)

where in Eq. (20), the second-order spatial derivative of the cubic
kernel function ∇2𝑊 has a closed form:

∇2𝑊 = 𝜎𝑑


6
[(
3𝑞2 − 2𝑞

) d2𝑞
dr2
+ (6𝑞 − 2) d𝑞dr

(
d𝑞
dr

)⊤]
for 0 ≤ 𝑞 ≤ 1

2

6
[
(1 − 𝑞)2

(
− d2𝑞

dr2
)
+ 2(1 − 𝑞) d𝑞dr

(
d𝑞
dr

)⊤]
for 1

2 < 𝑞 ≤ 1

0 otherwise,
(22)

where 𝑞 = 1
ℎ
∥r∥, d𝑞dr = 1

ℎ
r
∥r∥ ,

d2𝑞
dr2

= 1
ℎ∥r∥

(
𝐼 − rr⊤

∥r∥2
)
.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

DiffFR: Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body Control - Supplementary • 1:3

Now let’s dive into each term in Eqs. (20) and (21), To compute the
gradient involving fluid particle pressure 𝑝 𝑓𝑖 , we need to investigate
the pressure projection solver in the fluid simulation. Recall that in
DFSPH, the pressure 𝑝 𝑓𝑖 of fluid particle 𝑓𝑖 is solved implicitly with
source term respectively being the divergence error and density
error as:

𝑝 𝑓𝑖 =
1
Δ𝑡

𝐷𝜌 𝑓𝑖

𝐷𝑡
·

𝜌2
𝑓𝑖

∑

𝑗 𝑚 𝑗∇𝑊𝑖 𝑗

2 +∑

𝑗

𝑚 𝑗∇𝑊𝑖 𝑗

2 ,︸ ︷︷ ︸

𝑘DFSPH
𝑓𝑖

𝑝 𝑓𝑖 =
1
Δ𝑡2

(
𝜌∗
𝑓𝑖
− 𝜌0

)
𝑘DFSPH
𝑓𝑖

,

(23)

where𝑚𝑓𝑖 , 𝜌 𝑓𝑖 is the mass and density of 𝑓𝑖 ;𝑊𝑖 𝑗 =𝑊 (𝑥𝑖 − 𝑥 𝑗 , ℎ) is
the kernel function with support radius ℎ and two particle positions
𝑥𝑖 , 𝑥 𝑗 ;

𝐷𝜌𝑓𝑖
𝐷𝑡

=
∑
𝑗 𝑚 𝑗

(
v𝑖 − v𝑗

)
· ∇𝑊𝑖 𝑗 is the density error caused by

velocity advection and 𝜌∗
𝑓𝑖
= 𝜌 𝑓𝑖 + Δ𝑡

𝐷𝜌𝑓𝑖
𝐷𝑡

is the predicted density.
In practice, the 𝜌 𝑓𝑖 in 𝑘

DFSPH
𝑓𝑖

is approximated with 𝜌0 thus can be

moved into the computation of 𝐷𝜌𝑓𝑖
𝐷𝑡

and 𝜌∗
𝑓𝑖
− 𝜌0 to simplify the

computation, then the simplified 𝑘DFSPH
𝑓𝑖

is computed as:

𝑘DFSPH
𝑓𝑖

=
1

∑

𝑗 𝑚 𝑗∇𝑊𝑖 𝑗

2 +∑

𝑗

𝑚 𝑗∇𝑊𝑖 𝑗

2 . (24)

To compute the gradient, we directly differentiate Eq. (23). In the
density error solver, we compute the gradient based on chain rules
with 𝑠𝑏 𝑗 ∈ (𝑥𝑏 𝑗 , 𝑣𝑏 𝑗):

𝜕𝑝 𝑓𝑖

𝜕𝑠𝑏 𝑗
=

1
Δ𝑡2

©­«
𝜕𝜌∗
𝑓𝑖

𝜕𝑠𝑏 𝑗
𝑘DFSPH
𝑓𝑖

+ (𝜌∗
𝑓𝑖
− 𝜌0)

𝜕𝑘DFSPH
𝑓𝑖

𝜕𝑠𝑏 𝑗

ª®¬ . (25)

In the divergence error solver, we compute the gradient the same
way, since the computational structure of the divergence error solver
and density error solver is the same but with different source terms:

𝜕𝑝 𝑓𝑖

𝜕𝑠𝑏 𝑗
=

1
Δ𝑡

©­­«
𝜕

(
𝐷𝜌𝑓𝑖
𝐷𝑡

)
𝜕𝑠𝑏 𝑗

𝑘DFSPH
𝑓𝑖

+
𝐷𝜌 𝑓𝑖

𝐷𝑡

𝜕𝑘DFSPH
𝑓𝑖

𝜕𝑠𝑏 𝑗

ª®®¬ , (26)

In which
𝜕

(
𝐷𝜌𝑓𝑖
𝐷𝑡

)
𝜕𝑠𝑏𝑗

is computed as:

𝜕

(
𝐷𝜌𝑓𝑖
𝐷𝑡

)
𝜕𝑣𝑏 𝑗

= −𝑚𝑏 𝑗∇𝑊𝑖 𝑗 ,
𝜕

(
𝐷𝜌𝑓𝑖
𝐷𝑡

)
𝜕𝑥𝑏 𝑗

=𝑚𝑏 𝑗∇
2𝑊𝑖 𝑗 (𝑣 𝑓𝑖 − 𝑣𝑏 𝑗). (27)

For
𝜕𝑘DFSPH

𝑓𝑖

𝜕𝑠𝑏𝑗
and

𝜕𝑘DFSPH
𝑓𝑖

𝜕𝑣𝑏𝑗
, since 𝑣𝑏 𝑗 is not directly involved in the

comuputation of 𝑘DFSPH
𝑓𝑖

,
𝜕𝑘DFSPH

𝑓𝑖

𝜕𝑣𝑏𝑗
= 0, and

𝜕𝑘DFSPH
𝑓𝑖

𝜕𝑥𝑏𝑗
is computed as:

𝜕𝑘DFSPH
𝑓𝑖

𝜕𝑥𝑏 𝑗
= 𝛼


(
𝑚𝑏 𝑗∇

2𝑊𝑖 𝑗
) ©­«

∑︁
𝑗

𝑚 𝑗∇𝑊𝑖 𝑗 ª®¬ +𝑚𝑏 𝑗∇2𝑊𝑖 𝑗∇𝑊𝑖 𝑗
 ,
(28)

ALGORITHM 1: Constant density solver with gradient computation
1 Function DensitySolverWithGradient(𝑘DFSPH)
2 𝜖 = density error
3 while (𝜖 > thresh) do
4 compute 𝜌𝑓𝑖 for each fluid particle

// compute gradient before updating 𝑣𝑓 :

5 parallel forall dynamic boundary rigid body particle 𝑏 𝑗 do
6 sequential forall neighbor fluid particles 𝑓𝑖 do

7 compute
𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑏𝑗
,
𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑓𝑖
with Eqs. (21)(25)(29), etc.

8 compute
d𝐹𝑏𝑗←𝑓𝑖

d𝑣𝑏𝑗
=

(
𝐼 + Δ𝑡

𝑚𝑓𝑖

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑓𝑖

)−1 𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑏𝑗

9 accumulate & store
∑

𝑓𝑖

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑠𝑛
=

∑
𝑓𝑖

d𝐹𝑏𝑗←𝑓𝑖

d𝑠𝑏𝑗

𝜕𝑠𝑏𝑗
𝜕𝑠𝑛

// original forward simulation part:

10 parallel forall fluid particle 𝑓 do
11 traverse all neighbor fluid & rigid particles to compute

pressure forces to update 𝑣∗
𝑓
(Alg. (1) in main paper)

12 end
13 return updated fluid particle velocities 𝑣𝑓 ∗

14 end

where 𝛼 B −2(

∑
𝑗𝑚 𝑗∇𝑊𝑖 𝑗

2+∑𝑗 ∥𝑚 𝑗∇𝑊𝑖 𝑗 ∥2
)2 . With these formulas,

now we can compute the gradient of fluid particle pressure w.r.t.
rigid body particle state.

To sum up, with all the derived Eqs. (20)(21)(25)(26), we are able
to combine them to compute

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑥𝑏𝑗
and

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑏𝑗
. It is worth noting

that the above computation process seems complicated, but as ana-
lyzed in the main paper with respect to the gradient instability issue,
in the final proposed localized gradient computational scheme, we
only need to compute

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑏𝑗
.
𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕𝑣𝑓𝑖
can be computed in a similar

way by replacing the role of 𝑣𝑏 𝑗 in Eqs. (21)(25)(26) with 𝑣 𝑓𝑖 . For the
convenience of our readers, we include the formula for the density
solver below (divergence solver in a similar way):
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑖

=𝑚𝑓𝑖𝑉𝑏 𝑗

(
1
𝜌 𝑓𝑖
∇𝑊𝑖 𝑗

𝜕𝑝 𝑓𝑖

𝜕𝑣 𝑓𝑖

)
=𝑚𝑓𝑖𝑉𝑏 𝑗

(
1
𝜌 𝑓𝑖
∇𝑊𝑖 𝑗

1
Δ𝑡2

𝑘DFSPH
𝑓𝑖

𝜕𝜌∗
𝑓𝑖

𝜕𝑣 𝑓𝑖

)
=𝑚𝑓𝑖𝑉𝑏 𝑗

©­« 1
𝜌 𝑓𝑖
∇𝑊𝑖 𝑗

1
Δ𝑡2

𝑘DFSPH
𝑓𝑖

©­«Δ𝑡
∑︁
𝑗

𝑚 𝑗∇𝑊𝑖 𝑗 ª®¬ª®¬ .
(29)

.
To help readers better understand the process, we include the al-

gorithm for the density solver with gradient computation as Alg. (1),
and the divergence solver with gradient follows the same structure.
Finally, our goal is to get the final gradient of fluid-rigid cou-

pling forces and torques with respect to the rigid body state 𝑠𝑛 by
accumulating the gradient of each rigid body particle as:

𝜕𝑓 𝑛

𝜕𝑠𝑛
=

∑︁
𝑏 𝑗

∑︁
𝑓𝑖

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑠𝑛

=
∑︁
𝑏 𝑗

∑︁
𝑓𝑖

d𝐹𝑏 𝑗←𝑓𝑖
ds𝑏 𝑗

𝜕s𝑏 𝑗
𝜕𝑠𝑛

, (30)

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

1:4 • Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu

where the formula of 𝜕𝜏𝑛𝜕𝑠𝑛 has the same structure. However, there

is a gap between
d𝐹𝑏𝑗←𝑓𝑖

ds𝑏𝑗
in Eq. (30) and

𝜕𝐹𝑏𝑗←𝑓𝑖

𝜕s𝑏𝑗
in Eqs. (20)(21),

which means there are still other terms that need to be taken into
account in gradient computation. This is related to howwe decide to
differentiate the iterative solving process of DFSPH pressure solvers,
and we will introduce the computation details of the general while
unstable gradient computation scheme presented in the main paper
in the next section.

3 COMPUTATION DETAILS OF THE GENERAL BUT
UNSTABLE GRADIENT COMPUTATION SCHEME

In this section, we introduce the computational details of the general
but unstable gradient computation scheme of SPH-based two-way
fluid-rigid coupling presented in the main paper.

First, by considering the neighboring fluid particles of rigid body
particles in DFSPH pressure projection, it can be deduced from the
conclusions in the main paper that:

d𝐹𝑏 𝑗←𝑓𝑖
ds𝑏 𝑗

=
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕s𝑏 𝑗

+
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

+
∑︁
𝑓𝑗

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑗

d𝑣 𝑓𝑗
ds𝑏 𝑗

=
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕s𝑏 𝑗

+
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑏 𝑗

+
∑︁
𝑓𝑗

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑗

©­«
𝜕𝑣 𝑓𝑗

𝜕s𝑏 𝑗
+

∑︁
𝑓𝑝

𝜕𝑣 𝑓𝑗

𝜕𝑣 𝑓𝑝

d𝑣 𝑓𝑝
ds𝑏 𝑗

ª®¬ ,
(31)

where 𝑓𝑝 is the neighboring particle of 𝑓𝑗 , and we can further ex-
pand

d𝑣𝑓𝑝
ds𝑏𝑗

to a formula contain d𝑣𝑓𝑖
ds𝑏𝑗

. With the relationship between
particle accelerations and coupling forces, as the iterative solving
process goes on, 𝑘th-order neighboring fluid particles are taken into
account, leading to a recursive gradient computation formulation.

We can rewrite this formula to the gradient of 𝐹𝑏 𝑗←𝑓𝑖 w.r.t. rigid
body state 𝑠𝑛 as:

d𝐹𝑏 𝑗←𝑓𝑖
ds𝑛 =

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕s𝑛

+
𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑖

d𝑣 𝑓𝑖
ds𝑛 +

∑︁
𝑓𝑝

𝜕𝐹𝑏 𝑗←𝑓𝑖
𝜕𝑣 𝑓𝑝

d𝑣 𝑓𝑝
d𝑠𝑛 , (32)

where 𝑓𝑝 represents the fluid particle other than the first-ring neigh-
bor fluid particles 𝑓𝑖 of 𝑏 𝑗 .
To compute Eq. (32), the full velocity derivatives of each fluid

particle d𝑣𝑓𝑖
ds𝑛 ,

d𝑣𝑓𝑝
ds𝑛 are needed. Now we consider the relationship

between fluid-rigid coupling force and velocity of fluid particles. In
each iteration step of pressure projection, the fluid particle velocities
update as (with superscript 𝑘 denotes the 𝑘th iteration):

𝑣
(𝑘+1)
𝑓𝑖

= 𝑣
(𝑘)
𝑓𝑖
+ Δ𝑡

𝑚𝑓𝑖

∑︁
𝑏 𝑗

𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗 +

Δ𝑡

𝑚𝑓𝑖

∑︁
𝑓𝑗

𝐹
(𝑘)
𝑓𝑖←𝑓𝑗 . (33)

Therefore, gradients to the rigid body status could be derived itera-
tively by combining Eq. (32)(33):

d𝑣 (𝑘+1)
𝑓𝑖

ds𝑛 =

d𝑣 (𝑘)
𝑓𝑖

ds𝑛

+ Δ𝑡

𝑚𝑓𝑖

∑︁
𝑏 𝑗

©­­«
𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗
𝜕s𝑛

+
𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗

𝜕𝑣
(𝑘)
𝑓𝑖

d𝑣 (𝑘)
𝑓𝑖

ds𝑛 +
∑︁
𝑓𝑝

𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗

𝜕𝑣
(𝑘)
𝑓𝑝

d𝑣 (𝑘)
𝑓𝑝

ds𝑛
ª®®¬

+ Δ𝑡

𝑚𝑓𝑖

∑︁
𝑓𝑗

©­­«
𝜕𝐹
(𝑘)
𝑓𝑖←𝑓𝑗
𝜕s𝑛

+
𝜕𝐹
(𝑘)
𝑓𝑖←𝑓𝑗

𝜕𝑣
(𝑘)
𝑓𝑖

d𝑣 (𝑘)
𝑓𝑖

ds𝑛 +
∑︁
𝑓𝑝

𝜕𝐹
(𝑘)
𝑓𝑖←𝑓𝑗

𝜕𝑣
(𝑘)
𝑓𝑝

d𝑣 (𝑘)
𝑓𝑝

ds𝑛
ª®®¬ .

(34)
Then, to form a recursive solving formula, we obtain the gradient of

fluid-rigid forces by replacing d𝑣𝑓𝑖
ds𝑛 ,

d𝑣𝑓𝑝
ds𝑛 in Eq. (32) with

d𝑣 (𝑘)
𝑓𝑖

ds𝑛 ,
d𝑣 (𝑘)

𝑓𝑝

ds𝑛 ,

as:
d𝐹 (𝑘)
𝑓𝑖←𝑏 𝑗
ds𝑛 =

𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗
𝜕s𝑛

+
𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗

𝜕𝑣
(𝑘)
𝑓𝑖

d𝑣 (𝑘)
𝑓𝑖

ds𝑛 +
∑︁
𝑓𝑝

𝜕𝐹
(𝑘)
𝑓𝑖←𝑏 𝑗

𝜕𝑣
(𝑘)
𝑓𝑝

d𝑣 (𝑘)
𝑓𝑝

ds𝑛 , (35)

where we assume that for all fluid particle 𝑓 , at the beginning of
the iteration d𝑣𝑓

ds𝑏𝑗
= 0.

Finally, since the fluid-rigid coupling forces are simply accumu-
lated along the 𝑘 times iterations in a single time step of DFSPH
pressure projection, the total force gradients can be derived by sum-
mation:

d𝐹𝑓𝑖←𝑏 𝑗
ds𝑛 =

∑︁ d𝐹 (𝑘)
𝑓𝑖←𝑏 𝑗
ds𝑛 . (36)

To sum up, as iteration index 𝑘 increases, to update the veloc-
ity 𝑣 𝑓𝑖 of fluid particle 𝑓𝑖 , 𝑘th-order neighboring fluid particles are
involved, then the recursive solving of the fluid-rigid coupling gra-
dient gradually accumulates the gradient contribution from the
𝑘th-order of fluid particles. However, we find that in practice this
general gradient computation scheme encounters quick gradient
explosion issues, as stated in the main paper.

4 COMPUTATIONAL DETAILS OF DIFFERENTIABLE
SPH-BASED RIGID-RIGID CONTACT

As shown in the main paper, we present a penalty-based SPH-based
rigid-rigid contact model for its good differentiability.

𝐹normal
𝑟 = 𝑘 (𝜌𝑟

𝜌0
− 1)nr, 𝐹 friction𝑟 = −𝜇∥𝐹normal∥ vrelr

∥vrelr ∥
, (37)

The gradient of the normal force to rigid particle density is:

d𝐹normal
𝑟

d𝜌𝑟
=
𝑘

𝜌0
n𝑟 ,

d𝐹 friction𝑟

d𝜌𝑟
= −𝜇 vrel𝑟

∥vrel𝑟 ∥

(
𝐹normal
𝑟

∥𝐹normal
𝑟 ∥

)⊤
d𝐹normal
𝑟

d𝜌𝑟
(38)

Given the gradient of the density of a rigid particle to its positions
or another rigid particle d𝜌𝑟

d𝑥 (which can be easily computed by dif-
ferentiating the kernel function in SPH density formulation), we
can compute the rigid contact normal force and friction force to the
rigid particles in contact. The friction force to particle velocity can
also be easily computed by differentiating vrel𝑟 . Then we accumulate
the gradient of all rigid particles to get the final gradient of contact
forces to rigid body state.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

DiffFR: Differentiable SPH-based Fluid-Rigid Coupling for Rigid Body Control - Supplementary • 1:5

Table 2. Summary of the optimization parameters of the gradient descent optimizer and scene settings used in our rigid body trajectory optimization
experiments. lr0𝑣, lr

0
𝜔 denotes the initial learning rate for linear and angular velocities, 𝑤position, 𝑤rotation are the weight factor for position and rotation energy,

and patience is the patience parameter for the learning rate scheduler. 𝑥0, 𝑥∗, 𝜃 ∗, 𝑡∗ denotes the initial position, the target position, the target rotation angle
on the XYZ axis of the rigid body (In practice we use quaternion for orientation), and the target time respectively. "-" means not to optimize this variable in the
experiment.

Task lr0𝑣 lr0𝜔 𝑤position 𝑤rotation patience 𝑥0 𝑥∗ 𝜃∗ 𝑡∗

Water Bottle Flip 1 1 0.1 1 5 (-2, 1.5, 0) (4.3, 3.5, 0) (X 0°, Y 0°, Z 360°) 1.0s
Stone Skipping 8 1 1 - 5 (-2, 1.2, 0) (1.7, 1.6, 0) - 0.23s
Water Rafting 0.1 0.1 1 1 10 (-1.0, 0.6, -0.6) (1.0, 0.5, 0.7) (X 0°, Y 180°, Z 0°) 2.0s
High Diving - 1 - 1 20 - - (X 0°, Y 180°, Z 0°) 2.3s

On-water Billiards 0.2 0.2 1 - 5 (-0.1, 0.46, 0) (0.5, 0.5, -0.5) - 0.25s

5 COMPUTATION DETAILS OF GRADIENTS OF
IMPULSE-BASED MULTI-BODY SIMULATION

In the example of the 2D on-water inverted pendulum robot, we
use a spherical joint to connect the pole and the cart, and adopt
the impulse-based multi-body simulation method from [Bender and
Schmitt 2006]. In this method, the constraints in articulated systems
are satisfied by introducing additional impulses to the integration
of each part of the multi-body system, which we find in practice
can be more easily integrated into our framework compared with
other articulated system simulation methods.

In the spherical joint, the constraint is that the distance 𝑑 between
the joint points 𝑥1, 𝑥2 of two bodies should always be 0. In the
forward simulation, suppose we do not consider this constraint in
one time step with initial time 𝑡0, then at the end of the time step, 𝑑
becomes:

𝑑 (𝑡0 + Δ𝑡) = 𝑥1 (𝑡0 + Δ𝑡) − 𝑥2 (𝑡0 + Δ𝑡). (39)
To make 𝑑 (𝑡0+Δ𝑡) still equal to 0, the idea of [Bender and Schmitt

2006] is to introduce an additional impulse into the system to correct
this distance error at the end of this time step. To compute this
impulse, we first introduce the change of velocity of one point on a
rigid body in the impact of external impulse. Let 𝑃 (𝑡) and 𝑄 (𝑡) be
two arbitrary points of the 𝑖-th rigid body in world space and let
𝑟𝑃 (𝑡) = 𝑃 (𝑡) −𝐶𝑖 (𝑡) and 𝑟𝑄 (𝑡) = 𝑄 (𝑡) −𝐶𝑖 (𝑡) be the vectors from
the mass center𝐶𝑖 to these points. If an impulse 𝑝 is applied at𝑄 (𝑡),
the change Δ𝑣𝑃 (𝑡) of the point velocity of 𝑃 (𝑡) can be computed
with the following matrix 𝐾𝑃,𝑄 (𝑡):

𝐾𝑃,𝑄 (𝑡) :=
{

1
𝑚𝑖

I3 − [𝑟𝑃 (𝑡)] I−1𝑖 (𝑡)
[
𝑟𝑄 (𝑡)

]
if body 𝑖 is dynamic

0 otherwise
Δ𝑣𝑃 (𝑡) = 𝐾𝑃,𝑄 (𝑡) · 𝑝,

(40)
where I3 is the 3 × 3 identity matrix and 𝑚𝑖 , I𝑖 is the mass and
the inertia tensor of the 𝑖-th rigid body. In the on-water inverted
pendulum robot example, suppose the distance between the pivot
point and the mass centers of the pole and the cart is 𝑅1𝑙1, 𝑅2𝑙2 with
𝑅 be the rotational matrix, then 𝐾 is computed as:

𝐾𝑖 =
1
𝑚𝑖

I3 − [𝑅𝑖𝑙𝑖] I−1𝑖 (𝑡) [𝑅𝑖𝑙𝑖] , 𝑖 = 1, 2 (41)

Then we can compute the impulse 𝑝 needed in the spherical joint
by solving the following equation:

𝐾1 (𝑡0) · 𝑝 − 𝐾2 (𝑡0) · (−𝑝) =
1
Δ𝑡
𝑑 (𝑡0 + Δ𝑡) , (42)

The matrix 𝐾 (𝑡0) := 𝐾1 (𝑡0) + 𝐾2 (𝑡0) is constant at time 𝑡0 and
is nonsingular, symmetric and position definite (proof in [Mirtich
1996]). Therefore, the equation above can be solved by inverting
𝐾 (𝑡0):

𝑝 =
1
Δ𝑡
𝐾 (𝑡0)−1 𝑑 (𝑡0 + Δ𝑡) . (43)

To differentiate the impulse-based multi-body simulation in the
on-water inverted pendulum robot example, we need to compute
the gradient of this impulse to the velocity of the cart, which can be
done based on the chain rule:

d𝑝
d𝑣 =

1
Δ𝑡

(
d𝐾−1
d𝑣 𝑑 + 𝐾−1 d𝑑d𝑣

)
, (44)

where d𝐾−1
d𝑣 and d𝑑

d𝑣 are computed as:

d𝐾−1
d𝑣 𝑑 = −𝐾−1 d𝐾d𝑣 𝐾

−1𝑑 (45)

d𝐾
d𝑣 𝑑 = −

d
(∑2

𝑖=1 [𝑅𝑖𝑙𝑖] I−1𝑖 (𝑡) [𝑅𝑖𝑙𝑖]
)

d𝑣 𝑑, (46)

d𝑑
d𝑣 =

d(𝑥1 − 𝑥2)
d𝑣 + d(𝑅1𝑙1 − 𝑅2𝑙2)

d𝑣 , (47)

which can be computed with the techniques to compute gradient
involving rotational matrix introduced in Sec. 1. Finally, we integrate
the gradient of this additional impulse into our framework to extend
our differentiable particle-based fluid-rigid coupling simulator to
support multi-body systems.

6 EXPERIMENT DETAILS

6.1 Experiment parameters
We summarize the optimization parameters and scene settings used
in the rigid body trajectory optimization experiments in Tab. 2.

6.2 Influence of Initial Learning Rate
We evaluate the influence of the initial learning rate of the gradient
descent method on the results. In practice, we only manually set
the initial learning rate and let the learning rate scheduler automat-
ically reduce the learning rate once by half based on optimization
performance. Our choice of initial learning rate is based on a sim-
ple strategy: when we observe overshooting, we lower the initial
learning rate by half otherwise we increase the initial learning rate.
We choose the water bottle flip task as an example to show the
influence of the initial learning rates on the optimization results.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

1:6 • Zhehao Li, Qingyu Xu, Xiaohan Ye, Bo Ren, and Ligang Liu

The results are shown in Fig. 1, where the positional and rotational
energy share the same initial learning rate. In this task, the results
are not very sensitive to the initial learning rate, and similar results
are observed in other tasks.

Fig. 1. Optimization results of the gradient descent optimizer on the water
bottle flipping task with different initial learning rates.

REFERENCES
Nadir Akinci, Markus Ihmsen, Gizem Akinci, Barbara Solenthaler, and Matthias

Teschner. 2012. Versatile rigid-fluid coupling for incompressible SPH. ACM Trans.
Graph. 31, 4 (Aug. 2012), 1–8. https://doi.org/10.1145/2185520.2185558

Jan Bender and Dan Koschier. 2015. Divergence-free smoothed particle hydrodynamics.
In Proceedings of the 14th ACM SIGGRAPH / Eurographics Symposium on Computer
Animation. ACM, Los Angeles California, 147–155. https://doi.org/10.1145/2786784.
2786796

Jan Bender and Dan Koschier. 2017. Divergence-Free SPH for Incompressible and
Viscous Fluids. IEEE Trans. Visual. Comput. Graphics 23, 3 (March 2017), 1193–1206.
https://doi.org/10.1109/TVCG.2016.2578335

Jan Bender and Alfred Schmitt. 2006. Fast Dynamic Simulation of Multi-Body Systems
Using Impulses. In Virtual Reality Interactions and Physical Simulations (VRIPhys).
Madrid (Spain), 81–90.

Tassilo Kugelstadt and Elmar Schömer. 2016. Position and Orientation Based Cosserat
Rods. In Eurographics/ ACM SIGGRAPH Symposium on Computer Animation, Ladislav
Kavan and Chris Wojtan (Eds.). The Eurographics Association. https://doi.org/10.
2312/sca.20161234

Brian Vincent Mirtich. 1996. Impulse-Based Dynamic Simulation of Rigid Body Systems.
Ph. D. Dissertation. AAI9723116.

ACM Trans. Graph., Vol. 42, No. 6, Article 1. Publication date: December 2023.

https://doi.org/10.1145/2185520.2185558
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1145/2786784.2786796
https://doi.org/10.1109/TVCG.2016.2578335
https://doi.org/10.2312/sca.20161234
https://doi.org/10.2312/sca.20161234

	1 Computation Details of Gradients of Rigid Body Dynamics
	2 Computation Details of Gradients of SPH-based Two-way Fluid-Rigid Coupling
	3 Computation Details of the General but Unstable Gradient Computation Scheme
	4 Computational Details of Differentiable SPH-based Rigid-Rigid Contact
	5 Computation Details of Gradients of Impulse-based Multi-body Simulation
	6 Experiment Details
	6.1 Experiment parameters
	6.2 Influence of Initial Learning Rate

	References

