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This supplement provides more technical details of our freezing thin-
film simulation framework. We hope this supplementary material
to be self-contained and helpful for implementation.

1 COMPUTATION DETAILS OF TANGENTIAL
DYNAMICS ON FREEZING THIN FILMS

In this section, we introduce our derivation of the implicit equa-

tion of the surfactant concentration I'. We start with the freezing

dynamics model:
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The Eq.(1) can be written as:
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From Eq. (2), we obtain
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Then we substitute Eq. (7) into Eq. (6):
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2 COMPUTATION DETAILS OF DENDRITIC CRYSTAL
SIMULATION

Following Ren et al. [2018], the free energy function is given as:
1
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Table 1. Parameters of examples.

Example j| M| K a Myri

Floating Bubble (Sphere Case) | 6 | 40 | 3.7 | 0.0012 | 10000
Floating Bubble (Ellipsoid Case) | 8 | 40 | 3.7 | 0.0012 | 10000
Swaying Dome-like Bubble 4| 40 | 3.7 | 0.0012 | 10000
Catenoid 5| 40 | 435 | 0.0012 | 10000

Symmetry Breaking 51 40 | 3.7 | 0.0012 | 2500
Spiral Dendritic Crystals 6| 40 | 3.7 | 0.0012 | 10000
5-point Star-shaped Thin Film | 6 | 80 | 3.0 | 0.0006 | 10000

where f;(T) and f;(T) represent free energy densities related to the
temperature T. The anisotropy function ¢ is given as:

£(0) = £(1+ bcos(j(Oori — 0))), (11)

where &, 6, j are constants that control the thickness of the solid-
liquid interface, the strength of anisotropy, and the number of
the main branches, respectively. Moreover, we use we use g({) =

T =12 p(@) = 226 - 20), (T) = 0, {(T) = ‘@ and

fori(1V80ril) = 7 V00, where &(T) = % arctan(y(T, = T) repre-
sents the degree of temperature supercooling that drives the solidi-
fication of the liquid, and «, y, Te, J are constants representing the
supercooling coefficient on (0, 1), the thermal scaling factor and the
melting temperature respectively.

The main shape control parameters and their value ranges used
in our experiments are detailed below: 1) the anisotropic modulus j
controls the number of main branches. In our experiments, it is set
to an integer between 4 and 8. 2) M, controls the growth speed, and
a higher value results in faster growth, yielding smoother dendrite
shapes. We set it up in the range [40, 80] for our experiments. 3) K
controls the branching effects. With higher K, there will be more
branches in the final shape, but it also slows the growth speed. It
changes from 3.0 to 3.2 in our practice. 4) a controls the thermal
conduction, and higher a yields a smoother shape with fewer branch
details. The appropriate value is in the range [0.0006,0.0012] in our
experiments. 5) M,r; controls the symmetry. A higher M,,; results
in more symmetrical patterns, while a lower one leads to stronger
symmetry breaking effects. We set it between 2500 and 10000. The
exact values of these parameters in our example are listed in Table 1.

3 IMPLEMENTATION DETAILS OF DISCRETIZAION

We implement the surface differential operators as:

Veg= ). ap(gs—qa)VsW(AB),

BeN(A)
Vs-w= apTp(wp —wa) - VsW (A, B),
BEN(A) (12)
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where the indicator of particle sets is omitted since we compute the
derivatives on all &, £, and M, W (A, B) is 3D kernel function of
x4 — xB, W(A, B) is 2D kernel function of T4(x4 — xp). Similar
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to MELP [Deng et al. 2022] , we approximate the VW as Ipxa VoW
to simplify the calculation and compute L 4(w) = (w - n4)ny and
Ta(w) =w— L4 (w) for particle A € LUE U M. We use the Quintic
spline kernel for both W and W, with the radius r set to Axg for
discretization on M, Ax y for transfet between £ and M, and 4-Axg
for &, where Ax s and Axg reflect the separation of £ and &. It is
noteworthy that the Laplacian of the surfactant concentration T' is
calculated through V; - VT rather than VEF, which is mentioned
in IISPH [Ihmsen et al. 2013].

4 IMPLEMENTATION DETAILS OF FLUID-SOLID
COUPLING

In the Fluid-solid Coupling step, we first employ the XSPH method
(with viscosity parameter 0.1) on all £ particles to smooth the veloc-
ity of fluid and ice crystals and enhance the stability of the coupling.
Then, we use the atomic addition (the function atomicAdd provided
by CUDA) to compute the total mass, momentum, centroid, and
moment of inertia of each dendritic crystal in parallel. In the above
process, we use connectivity calculations to determine which rigid
body each solid particle belongs to. We assume that two solid parti-
cles are connected, if their distance is smaller than 1.5 -Ax . Besides,
if the two solid particles belonged to different rigid bodies in the
previous frame and the modulus of their relative velocity is less
than a certain threshold (e.g., 0.1 times the mean value of the modal
length of both velocities), we consider them to be not connected.
Finally, we perform several XSPH steps (typically 5 in our examples)
with the viscosity parameter of 0.999 for the tangential velocity of
the fluid particles.
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