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Fig. 1. In this paper, we propose a novel framework for high-fidelity surface reconstruction and novel-view synthesis of translucent objects. We derive an
enhanced density function ensuring the constant extinction coefficient inside the translucent object. (a) Multi-view RGB image input. (b) The reconstruction
error compared with the ground-truth geometry is far less than the baseline methods [Ge et al. 2023; Wang et al. 2021, 2022]. (c) Translucent appearance is
faithfully rendered at the novel view using a learned neural participating medium with disentangled scattering properties.

Learning from multi-view images using neural implicit signed distance
functions shows impressive performance on 3D Reconstruction of opaque
objects. However, existing methods struggle to reconstruct accurate geom-
etry when applied to translucent objects due to the non-negligible bias in
their rendering function. To address the inaccuracies in the existing model,
we have reparameterized the density function of the neural radiance field by
incorporating an estimated constant extinction coefficient. This modification
forms the basis of our innovative framework, which is geared towards high-
fidelity surface reconstruction and the novel-view synthesis of translucent
objects. Our framework contains two stages. In the reconstruction stage,
we introduce a novel weight function to achieve accurate surface geometry
reconstruction. Following the recovery of geometry, the second phase in-
volves learning the distinct scattering properties of the participating media
to enhance rendering. A comprehensive dataset, comprising both synthetic
and real translucent objects, has been built for conducting extensive experi-
ments. Experiments reveal that our method outperforms existing approaches
in terms of reconstruction and novel-view synthesis.

CCS Concepts: • Computing methodologies→Mesh geometry models.
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1 INTRODUCTION
Multi-view 3D reconstruction is a fundamental task in computer
graphics and vision. Recently, inspired by the neural radiance field
proposed in [Mildenhall et al. 2021], numerous follow-up works
have focused on modeling the 3D scenes using density 𝜎 and view-
dependent color 𝑐 . This learned implicit representation of the object
or scene performs impressive results in novel view synthesis. Pio-
neered by VolSDF [Yariv et al. 2021] and NeuS [Wang et al. 2021],
one direction of improvement work uses the signed distance func-
tion (SDF) to optimize view consistency of the density field so that a
meaningful surface can be extracted from it. They propose to learn
implicit SDF using the neural network and combining the density of
the scene with it. Trained using multi-view images, they optimize
that implicit neural SDF network to obtain a solid surface.

Translucent objects are a kind of object with special optical prop-
erties. Unlike the opaque one, which obstructs light transferring
from the outside to the inside, the translucent object lets light pass
through its surface while simultaneously scattering it in different
directions. For opaque objects, all light leaving the object is scat-
tered from the surface. For translucent objects, some of the light
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leaving the object has entered the object and been scattered multiple
times before emerging. Recent works [Ge et al. 2023; Wang et al.
2022] for reconstruction based on NeuS [Wang et al. 2021] using a
neural radiance field and implicit SDF network achieve excellent
results on opaque objects. Their method only considers the points
on the reconstructed surface, while the points inside the object are
overlooked. However, translucent appearance is strongly coupled
with the total geometry, it is often the case that inverted shapes are
observable in the rendering results. The absorption and scattering
inside the translucent region play a key role in the rendered result,
which can not be covered by the conventional NeuS-like model
where the weight is only non-zero near the opaque surface.

To tackle the above issue, we propose a novel model for translu-
cent object reconstruction and view synthesis. We propose a theo-
retical model for the neural radiance field of translucent objects and
reparametrize the density field inside the object using an estimated
extinction coefficient. The extinction coefficient (often informally
referred to as "density") defines the net loss of radiance due to both
absorption and scattering. For translucent objects with homoge-
neous material, their extinction coefficient is constant. We utilize
this physical property to design our invariant density function re-
lated to the extinction coefficient. Based on the proposed model,
we design a framework for high-fidelity surface reconstruction and
novel-view synthesis. A simple pipeline of our method can be found
in Fig. 1. In the first stage, we combine the transmission color and
surface color to train our neural SDF network. In the second stage,
we utilize the recovered geometry and density field to decompose
scattering properties into single-scattering and multi-scattering. For
novel-view synthesis, we learn their neural representations using
participating media and multi-level conical sampling.

To evaluate the performance of our method, a dataset containing
translucent objects is required for both reconstruction and rendering.
The previous datasets like DTU [Jensen et al. 2014] and Blended-
MVS [Yao et al. 2020] are available for reconstructing and rendering
opaque objects. The Shiny Blender dataset in [Ge et al. 2023] and the
Glossy dataset in [Liu et al. 2023] contain objects with highly specu-
lar appearance. However, none of them contain translucent objects.
We propose a dataset of translucent objects under a co-located flash-
light, which contains "Syn-Trans" consisting of synthetic images
and "Real-Trans" captured using a smartphone. The details of our
dataset are introduced in Sec. 4.2.
We summarize our key contributions as:
• We propose a theoretical model for the neural radiance field
of translucent objects, which parametrizes the density field
using a constant extinction coefficient.
• We propose a novel framework for high-fidelity surface recon-
struction of translucent objects and refine the view synthesis
result under the co-located flashlight using neural participat-
ing media.
• We construct a new translucent dataset under the co-located
flashlight for evaluating reconstruction and rendering results.

2 RELATED WORKS

2.1 Neural radiance fields
NeRF [Mildenhall et al. 2021] utilizes the MLP (Multi-Layer Per-
ceptron) network and multi-view images to learn an implicit repre-
sentation of the scene. It proposes to predict the view-dependent
radiance and view-independent volume density of points in 3D
space. NeRF is a continuous implicit representation of 3D scenes,
which has a significant improvement in expression ability compared
to discrete display representations [Gao et al. 2022; Li et al. 2023a].
Through the volume rendering equation, NeRF can synthesize high-
quality images from novel views. Many following works [Chen et al.
2022, 2023; Fridovich-Keil et al. 2022; Müller et al. 2022] improve
the scene representations of NeRF. Mip-NeRF [Barron et al. 2021]
essentially improves the sampling theory of NeRF to achieve anti-
aliasing. NeuLF [Li et al. 2023d, 2021] represent scenes using a 4D
light field, which is efficient for high-quality novel-view synthesis.
Other works improve the radiance field to apply NeRF to complex
scenes. Ref-NeRF [Verbin et al. 2022], Mirror-NeRF [Zeng et al. 2023]
and NeRFReN [Guo et al. 2022] add specular reflections properties
on the radiance field. These methods are designed for opaque ob-
jects and they can’t model the appearance of translucent objects. For
non-opaque objects, Bemana et al. [Bemana et al. 2022] propose to
handle refraction radiance using simplified Eikonal rendering [Ihrke
et al. 2007]. NeMF [Zhang et al. 2023a] combines Microflake the-
ory [Heitz et al. 2015] with neural radiance field. OSF [Yu et al.
2023] proposes to use additional sampling between points and light
sources. It requires objects with a known bounding box and the
location of light. These methods focus on novel-view synthesis and
surface reconstruction is not mentioned in their method.

2.2 Neural reconstruction and implicit surfaces
NeRF can not locate the precise surface position of an object. To
represent the surfaces of the scene using a neural network, the occu-
pancy functions and signed distance fields(SDF) are most commonly
used. Early works like [Chen and Zhang 2019] take point clouds as
input and output an implicit neural surface. More works are focused
on reconstructing implicit surfaces from multi-view images and
learning an SDF function consisting of the fully connected MLP net-
work. DVR [Niemeyer et al. 2020] and IDR [Yariv et al. 2020] adopt
surface rendering to reconstruct high-quality surfaces in relatively
simple scenes. UNISURF [Oechsle et al. 2021], VolSDF [Yariv et al.
2021] and NeuS [Wang et al. 2021] propose to design weighting
strategies on render equation of NeRF. UNISURF predicts the occu-
pancy field to combine the color of the surface point of the object, as
well as the points near the surface. It gradually removes ambiguities
during training and finally obtains a solid surface. VolSDF and NeuS
propose to design a weight function considering the SDF value of
points in 3D space. Based on VolSDF and NeuS, works like [Mu et al.
2023; Wu et al. 2023; Zhang et al. 2021c] focus on reconstruction
from sparse views. BakedSDF [Yariv et al. 2023] decomposes dif-
fuse color and specular reflection components into the vertices of
triangle meshes extracted from the SDF network. NeRO [Liu et al.
2023] and Ref-NeuS [Ge et al. 2023] extend NeuS to reflective surface
reconstruction. They propose to separate the reflection radiance
from the neural network. These methods assume that the radiance
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observed by the camera only relates to the irradiance at the surface
while omitting the transmission and scattering light from the in-
side part of the translucent object. Methods like [Gao et al. 2023; Li
et al. 2023b; Lyu et al. 2020] focus on transparent object reconstruc-
tion. Deng et al. [2022] utilize differentiable BSSRDF path-tracing
to reconstruct real-world translucent objects, but their method is
computationally costly. The method in [Lin et al. 2023] acquires the
shape of translucent objects using sinusoidal and binary patterns of
illumination, while our reconstructed method can handle arbitrary
illumination.

2.3 Inverse rendering from multiple images
Given multiple images of an object, inverse rendering aims to re-
cover the shape, material, and lighting through differentiable render-
ing. Recent inverse rendering work utilizes physics-based rendering
equations with learned parameters from neural networks. Unlike
methods in [Deschaintre et al. 2018; Li et al. 2020; Shi et al. 2023;
Wang et al. 2023; Zhu et al. 2022], which learn the material from
a single image, the shape and material learned from multiple im-
ages are more suitable for scene editing. Works like [Yao et al. 2022;
Zhang et al. 2023b, 2021a,b] recover unknown environment light
together with material appearance. Works like [Kaya et al. 2022;
Yang et al. 2022] combine traditional photometric stereo with neural
radiance field to make reconstruction or inverse rendering. IRON
[Zhang et al. 2022] performs impressive material decomposition un-
der the co-located flashlight. Our work addresses the same lighting
conditions as IRON. For a robust novel view synthesis and rendering
translucent appearance, we benefit from the physics-based render-
ing equation and learn neural representations of participating media
with disentangled scattering properties.

2.4 Neural rendering for translucent object
Works like [Wang et al. 2008; Yang and Xiao 2016] learn mate-
rial properties for the BSSRDF model to render translucent objects
with scattering. Li et al. [2023c] predict parameters used in forward
rendering and train a neural network to predict color using these pa-
rameters. It requires full supervision using ground truth parameters
to train its network. RPNN [Kallweit et al. 2017] and MRPNN [Hu
et al. 2023] use the neural network to render translucent objects like
clouds with complex scattering properties. However, their method
requires a ground-truth density field and supervision using ground-
truth radiance. Zhu et al. [2023] propose to learn a neural radiance
transfer field(NRTF) [Lyu et al. 2022] to render the scattering object
but requires a pre-computed geometry in learning progress and
a large number of images captured under varying lighting condi-
tions. Zheng et al. [2021] propose to learn a relightable participating
media for novel view synthesis on known light position. These
methods above can not recover the geometry while our method
exploits reconstructed geometry to render a more plausible result
by contrast.

Table 1. Symbols and its definitions. For similar representations unlisted
in this table, they represent similar meanings, such as the terms 𝑤in and
𝑤surf.

Symbol Definition
𝑜 Camera origin

𝑑,𝜔,𝜔 ′, 𝜔𝑖 , 𝜔𝑜 Direction
c, cin, 𝐿(x, 𝜔) Radiance of a point

𝜎 Volume density
𝜎𝑡 , 𝜎𝑠 Extinction and scattering coefficient
𝑇,𝑇 (𝑡) Accumulated transmittance

𝑤 (𝑡),𝑤 𝑗 ,𝑤in Weight function computed using 𝑇 and 𝜎
𝛼 𝑗 Opacity value computed as 1 −𝑇
𝐼 Intensity of the light

𝐿rgb, 𝐿eik Loss function
𝑓𝐺 Implicit SDF function
𝑛 surface normal

𝑥, 𝑥2, 𝑝 (𝑡), 𝑝 A 3D point
𝑡, 𝑡𝑖 , 𝛿𝑡 , 𝑡𝑛, 𝑡

∗
𝑛 Distance along a certain direction

𝛼 Roughness
Tr,Tr(𝑥, 𝑛) Transmittance value at surface

𝑓𝑟 BRDF function
𝑐𝑚
𝑙
, 𝑌𝑚

𝑙
(𝜔𝑖 ) Weight and basis function for spherical harmonic

𝑐𝑑 , 𝑐𝑡 , 𝑐𝑠 Diffuse color,scattering color and specular color
𝐿𝑠 , 𝐿𝑚 Single scattering and multi-scattering
F , 𝐹1 feature descriptor and extracted feature
𝐹 Fresnel term in BRDF function

3 METHOD

3.1 Overview
Given a set of RGB images of translucent objects with known camera
pose and camera intrinsic, our method adopts two steps to recon-
struct the geometry and render arbitrary views with translucent
appearance. We assume that all images are captured using the co-
located flashlight. We first reconstruct the translucent object by opti-
mizing a neural SDF network using the volume rendering equation.
We analyze the limitation that exists in the baseline of NeuS [Wang
et al. 2021]. To resolve such limitations in their model, we propose a
theoretical model for the neural radiance field of translucent objects
in reconstruction. We reparametrize the density inside the object
using the extinction coefficient. Our density field and training pro-
cess are introduced in Sec. 3.3. After that, we exploit the learned
geometry of the object in the physically based rendering equation
for novel-view synthesis. We learn spatial invariant color, repre-
sented as albedo in material, roughness, and transmission albedo
for the surface rendering equation under direct co-located flashlight
light. For the detailed translucent appearance under indirect light,
we learn neural participating media with disentangled scattering
properties. Inspired by [Kallweit et al. 2017] and [Zheng et al. 2021],
we decompose scattering properties using single-scattering and
multi-scattering. We propose a multi-level conical sampling module
to learn the radiance of multi-scattering related to overall geometry.
We introduce details of our rendering method in Sec. 3.4. The overall
pipeline of our framework is shown in Fig. 2.
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(a) Reconstruction pipeline (b) Rendering pipeline

Fig. 2. Overview of our geometry reconstruction pipeline (left) and view synthesis pipeline (right). For geometry reconstruction, we propose another
weight function 𝑤in based on the constant extinction coefficient at a homogeneous medium. For a better visual appearance of translucent objects, we further
model the scattering property in our reconstructed volume. We model the specular color 𝑐𝑠 and diffuse color 𝑐𝑑 under direct light and decompose the scattering
property under indirect light into single-scattering 𝐿𝑠 and multi-scattering 𝐿𝑚 . We learn the neural representation of 𝐿𝑚 using multi-level conical sampling. A
detailed explanation of our method can be found in Sec. 3.3 and Sec. 3.4.

3.2 Preliminaries
Neural radiance fields. NeRF [Mildenhall et al. 2021] proposes to
use the volume rendering equation to render images under different
view directions. The color 𝐶 of the pixel corresponds to a given
ray 𝑝 (𝑡) = 𝑜 + 𝑡𝑑 , where 𝑜 ∈ R3 represents the camera origin and
𝑑 ∈ S2 represents the view direction of the camera. NeRF involves
an integral along the ray with boundaries 𝑡𝑛 and 𝑡𝑓 uses an MLP to
predict unknown values in the rendering equation.

𝐶 =

∫ 𝑡𝑓

𝑡𝑛

𝑇 (𝑡)𝜎 (𝑝 (𝑡))c(𝑝 (𝑡), 𝑑)𝑑𝑡 (1)

The volume density 𝜎 and radiance c of a point is modeled by
an MLP. The volume density is used to calculate the accumulated
transmittance 𝑇 (𝑡).

𝑇 (𝑡) = exp
(
−
∫ 𝑡

𝑡𝑛

𝜎 (𝑝 (𝑠)) 𝑑𝑠
)

(2)

Then we can compute a weight function𝑤 (𝑡) = 𝑇 (𝑡)𝜎 (𝑝 (𝑡)) to the
𝑐 of sampled points along the ray 𝑝 (𝑡) to compute the pixel color 𝐶 .
NeRF solves this equation of weight with the numerical integration
method:

𝑤 𝑗 = 𝛼 𝑗
∏𝑗−1

𝑖=1 (1 − 𝛼𝑖 )
𝛼 𝑗 = 1 − exp(−𝜎 𝑗 · (𝑡 𝑗+1 − 𝑡 𝑗 ))

(3)

NeuS for surface reconstruction. NeuS [Wang et al. 2021] repre-
sents the surface of an object using implicit neural SDF. It combines
volume rendering and surface rendering by setting up a connection
between𝑤 (𝑡) of sampled points and the SDF value of these points.
NeuS defines S-density as 𝜙𝑠 (𝑥) = 𝑠𝑒−𝑠𝑥/(1 + 𝑒−𝑠𝑥 )2 to replace the
original one where 𝑥 represent SDF value. The weight function
completed using 𝜙𝑠 attains local maximal value at surface intersect
points in their rendering function, which conforms to the optical
properties of opaque objects.

Physics-based surface rendering. In the surface rendering equa-
tion, the observed radiance from the view direction is modeled as an
integral of the bidirectional reflectance distribution function (BRDF)
and irradiance at the surface point 𝑥 with normal 𝑛.

𝐿𝑜 (𝑥, 𝜔𝑜 ) =
∫
Ω
𝐿𝑖 (𝑥, 𝜔𝑖 ) 𝑓𝑟 (𝑥,𝜔𝑖 , 𝜔𝑜 ) (𝜔𝑖 · 𝑛) d𝜔𝑖 (4)

Where 𝐿𝑖 (𝑥,𝜔𝑖 ) is the incoming light on 𝑥 from direction 𝜔𝑖 . The
𝑓𝑟 is the BRDF function which defines an energy distribution of
incoming light with respect to view direction 𝜔𝑜 .
Participating medium. A participating medium [Cerezo et al.
2005] affects light that passes through it, rather than leaving light
unchanged as when it passes through the clear air. A participating
medium absorbs, scatters, and emits light at each point along a light
ray as the ray passes through it. The radiative transfer equation in
the non-emissive participating medium is defined as:

(𝜔 · ∇)𝐿(x, 𝜔) = −𝜎𝑡 (x)𝐿(x, 𝜔) + 𝜎𝑠 (x)𝐿st
𝐿st =

∫
𝑆2

phase (x, 𝜔, 𝜔′) 𝐿 (x, 𝜔′) 𝑑𝜔 ′ (5)

where 𝑆2 denotes the spherical region around the position 𝑥 , 𝐿
represents the radiance and 𝜔 represents the direction. 𝜎𝑡 and 𝜎𝑠
represent extinction coefficient and scattering coefficient. The de-
rivative of the radiance in the direction of 𝜔 is expressed as 𝜔 · ∇.
The phase function represents bi-directional energy distribution.
For objects with isotropic scattering, phase(𝑥, 𝜔 ′, 𝜔) = 1

4𝜋 .

3.3 Surface reconstruction from translucent appearance
NeuS optimizes non-zero weights only near the opaque object sur-
face and assumes zero weight inside the object, which is improper
for translucent objects. A direct result is that the extinction coeffi-
cient inside the objects is not optimized and can vary largely even if
a homogeneous material is considered. To resolve the limitation in
NeuS, we model the density inside the object with correct physical
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properties using the extinction coefficient. Detailed explanations
are provided in the following paragraphs.
Modeling density with correct physical properties. Within
homogeneous translucent objects, the extinction coefficient is a non-
zero constant while outside of the object, the extinction coefficient
is zero. That is to say, we need to find a differentiable form for a
square-wave function that keeps invariant inside the object and
equal to zero outside the object. Inspired by VolSDF[Yariv et al.
2021], we use a Laplace distribution function associated with SDF
value to represent our density field:

𝜎 (𝑥) =


𝜎𝑡
2 exp

(
−𝑓𝐺 (𝑥 )

𝛽

)
if 𝑓𝐺 (𝑥) ≥ 0

𝜎𝑡 − 𝜎𝑡
2 exp

(
𝑓𝐺 (𝑥 )
𝛽

)
if 𝑓𝐺 (𝑥) < 0

(6)

where 𝑓𝐺 is our neural implicit SDF and 𝑓𝐺 (𝑥) is the SDF value
of point 𝑥 . 𝜎𝑡 is the constant value of the extinction coefficient. A
larger 𝜎𝑡 tends to lead to a lower translucency as the attenuation
of light is higher when traveling inside the volume. When 𝛽 ap-
proaches zero, our density 𝜎 of points inside the object converges to
𝜎𝑡 , while the density of points outside is set to 0. Note that Eq. 6 is
not mathematically smooth inside the translucent object. However,
with the discrete calculation nature of neural rendering equation,
such errors are small and only vary slightly near the center, espe-
cially for near-zero 𝛽 values. For generalization, we set the 𝜎𝑡 and
𝛽 learnable and optimize them in the training process. We report
our learned density field and 𝛽 in Fig. 4.
Training process. Shown in the left of Fig. 2, we sample 𝑁1 points
alongside the ray from 𝑡𝑛 to 𝑡𝑓 . Conventionally, 𝑛 represents "near"
and 𝑓 represents "far". For each point 𝑝 (𝑡) = 𝑜 + 𝑡 ∗ 𝑑 , where 𝑜
is the original position of the camera and 𝑑 is the view direction.
These points are sent to the neural SDF network to get the predicted
SDF value 𝑓𝐺 (𝑝 (𝑡)). Our goal is to reconstruct the correct geom-
etry from the input image sequence. However, most translucent
object appearances are not purely transmitting and contain surface
highlights. It has been proven by [Fan et al. 2023; Qiu et al. 2023]
that separating the specular and diffuse components is beneficial
for reconstruction and rendering. Inspired by them, our framework
contains two branches each for the on-surface color 𝑐 and the trans-
mitted color 𝑐in inside the object, respectively. The former can be
estimated further by separating into spatial-invariance color 𝑐𝑑 and
reflection color 𝑐𝑟 , where we learn 𝑐𝑑 using network proposed by
[Yariv et al. 2020] and 𝑐𝑟 using the method in [Verbin et al. 2022].
The latter needs to be calculated using our scheme.

𝐶 = (1 − 𝛾)
𝑡𝑓∑︁
𝑡𝑛

wsurfc(𝑝 (𝑡), 𝑑) + 𝛾
𝑡𝑓 ∗∑︁
𝑡𝑛∗

wincin (𝑝 (𝑡), 𝑑) (7)

The rendered color is given by Eq. 7. wsurf is the weight function
proposed in NeuS. We add a parameter 𝛾 to balance these terms. For
the uniformly sampled 𝑡 from "near" 𝑡∗𝑛 to "far" 𝑡∗

𝑓
, thewin is derived

from our density model Eq. 6 using Eq. 3. Theoretically, the weight
function of points inside the object with a constant density relies
exponentially on the extinction coefficient.

win (𝑡𝑖 ) = (1 − exp(−𝜎𝑡 · 𝛿𝑡 )) exp(−𝜎𝑡 · (𝑡𝑖 − 𝑡∗𝑛)) (8)

where 𝛿𝑡 = 𝑡𝑖+1 − 𝑡𝑖 . The detailed derivation is provided in the
Appendix. For physical plausibility, in the calculation of win, we

confine the sampling region to points between the intersection
positions 𝑡∗𝑛 and 𝑡∗

𝑓
, which can be calculated following [Fu et al.

2022]. We define the set of intersection points Ω as:

𝑅 = {𝑡𝑖 | 𝑓 (𝑡𝑖 ) · 𝑓 (𝑡𝑖+1) < 0}
Ω =

{
𝑡∗ | 𝑡∗ = 𝑓 (𝑡𝑖 )𝑡𝑖+1−𝑓 (𝑡𝑖+1 )𝑡𝑖

𝑓 (𝑡𝑖 )−𝑓 (𝑡𝑖+1 ) , 𝑡𝑖 ∈ 𝑅
} (9)

where 𝑓 (𝑡𝑖 ) is a simplicity format of 𝑓𝐺 (𝑝 (𝑡𝑖 )). We take the mini-
mum value and maximum value in Ω as 𝑡∗𝑛 and 𝑡∗

𝑓
.

We restrict the integral of the weight of points alongside the
camera ray to 1 in the training process, which indicates whether
this ray hits the surface or not. We use the L1 RGB loss 𝐿rgb, Eikonal
loss 𝐿eik[Gropp et al. 2020] and normal penalty loss 𝐿𝑛[Verbin et al.
2022] in the training process. 𝑘1, 𝑘2 are hyper-parameters to adjust
the penalty weight.

Loss = 𝐿rgb + 𝑘1 · 𝐿eik + 𝑘2 · 𝐿𝑛 (10)

It is to be noted that, after the above optimization, we are able
to obtain a satisfiable geometry of the translucent object. However,
the direct result of the rendered colors using Eq. 7 is still not perfect.
The reason is that we do not fully capture the scattering effects
inside the participating media in this function.

3.4 Neural rendering using recovered geometry
For a better visual appearance of translucent objects, we further
model the scattering property in our reconstructed volume using
spherical harmonic with learned coefficients and jointly optimize
neural materials from photometric images. For conforming to phys-
ically based rendering, we separate the rendered color into surface
color under direct light and translucent appearance under indi-
rect light. We render surface color using the physics-based surface
rendering equation and the translucent appearance using neural
participating media with disentangled scattering properties. We
introduce these parts in the following paragraphs respectively.
Co-located light assumption. Our scheme starts from the physics
equation Eq. 5. It is challenging for the general task of learning
translucent appearance from captured images. One reason is that
the geometry and lighting complexities are strongly coupled for
translucent objects. Thanks to the method in Sec. 3.3, we can recover
good geometry from arbitrary lighting environments, and we can
consider that the geometry is known in this section. However, recov-
ering scattering properties under unknown arbitrary environmental
lighting is still challenging because the path of light passing through
the interior of an object is very complex. Previous works simplify
this issue using a known lighting condition. For example, works
like [Zheng et al. 2021; Zhu et al. 2023] learn scattering properties
under known light position, [Hu et al. 2023; Kallweit et al. 2017]
focus on parallel light. To limit the input complexity, in this section,
we take photometric images under a co-located flashlight as our
input, which assumes that the captured object is exposed to only
one light and the aligned with the view direction. The simplified
surface rendering equation is defined as:

𝐿𝑜 (𝑥,𝜔𝑜 ) =
𝐼

∥𝑥 − 𝑜 ∥22
𝑓𝑟 (𝑥,𝜔𝑜 , 𝜔𝑜 ) (𝜔𝑜 · 𝑛) (11)
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where 𝐿𝑜 , 𝑥, 𝑛, 𝜔𝑜 , 𝑓𝑟 are observed light, surface intersection, surface
normal, view direction of the camera, and BRDF function. The inci-
dent light is represented as the attenuation of a white point light
with 𝐼 intensity.
Appearance under direct light. Shown in the right top of Fig.
2, we render appearance under direct light using neural materials.
We represent roughness 𝛼 as a neural network 𝑓𝛼 and we represent
diffuse albedo as 𝑓𝑎 . Moreover, we estimate light transmission under
unknown material using the neural network 𝑓Tr, which determines
how much energy of light transfers to the inner of the object. For
appearance under direct light, we use the same GGX microfacet
BRDF function 𝑓𝑟 as IRON [Zhang et al. 2022] to compute the spec-
ular 𝑐𝑠 and diffuse color 𝑐𝑑 . We revise the 𝐿 in Eq. 4 to (1 − Tr)𝐿
considering the transmission of the light.
Modeling translucent appearance using neural participating
media. Similar to [Zheng et al. 2021], we decompose scattering
properties into single-scattering 𝐿𝑠 and multi-scattering 𝐿𝑚 and
learn their neural representations. The single-scattering represents
the scattering radiance of in-coming light. For homogeneous mate-
rial that exhibits isotropic scattering, the single scattering can be
calculated as Eq. 12.

𝐿𝑠 (𝑝) =
1
4𝜋

𝜎𝑠 (𝑝 (𝑡)) · 𝐿𝑡 (𝑛,𝜔𝑖 , 𝑥)𝑇 (𝑥, 𝑝) (12)

where 𝜎𝑠 is the scattering coefficient, 𝑇 is the transmittance from
surface point 𝑥 to points 𝑝 inside the object. We compute 𝑇 using
the reconstructed density field from stage one. Following [Hu et al.
2023], we represent the ratio of the extinction coefficient and the
scattering coefficient using a learnable constant parameter 𝜉 . Inher-
ited from Eq. 6, we represent the real extinction coefficient of the
points related to its position. The learned 𝛽 from the first stage is
small enough to ensure the invariance of the extinction coefficient
so that the ratio can be regarded as a constant value. 𝐿𝑡 represents
the indirect light transferring from the surface.

𝐿𝑡 (𝑛,𝜔𝑖 , 𝑥) = (1 − 𝐹 )Tr(𝑥, 𝑛)
𝐼

| |𝑥 − 𝑜 | |22
(𝑛 · 𝜔𝑖 ) (13)

Where 𝐹 is the Fresnel term in BRDF function 𝑓𝑟 . The multi-
scattering represents the in-coming light scattering more than once
inside the media, which can be conducted by recursively substi-
tuting the solved 𝐿 into the right part in RTE equation 5. Unlike
single scattering, multiple scattering is not only related to a single
point but also to the overall shape. The estimated value of multi-
scattering usually requires path-tracing and integral computation
over all traced paths. Works in [Kallweit et al. 2017] propose that
the multiple scattering can be learned using a neural network that
takes features from multi-level sampling as input. Inspired by them,
we propose to estimate multi-scattering using extracted features
from different levels of sampling. Shown in the right bottom of Fig.
2, we compress the area affected by the point light into cones with
different heights and widths, which is more efficient for represent-
ing the spatial region. When light scatters more than one time, the
reachable region is enlarged and the sampling level should increase
at the same time. Our sampling region grows from the yellow one
to the blue one, which contains more points. We use Integrated
Positional Encoding(IPE) proposed in [Barron et al. 2021] as the
feature descriptor 𝑧 of each cone region. We feed encoded features

Algorithm I:Multi-level conical sampling
Input: Sampled positions {𝑡1, 𝑡2, ...}; view direction 𝑑 ;

surface intersection point 𝑥 ; MLP module
MLP1,MLP2 level 𝑘 , initial value for radius 𝑟0; factor
𝜆.

Output: Coefficient of spherical harmonics for sampled
points {{𝑐𝑚

𝑙
}1, {𝑐𝑚

𝑙
}2 ...}

1 𝑖 = 0; ℎ=0.5 ∗ (𝑡2 − 𝑡1); 𝑟 = 𝑟0;
2 features {𝐹1, 𝐹2, ...} ←− None
3 repeat
4 for each 𝑡 in sampled positions do
5 𝜇𝑡 =

3(𝑡+ℎ)4−(𝑡−ℎ)4
4(𝑡+ℎ)3−(𝑡−ℎ)3

6 𝜎𝑡 =
3(𝑡+ℎ)5−(𝑡−ℎ)5
5(𝑡+ℎ)3−(𝑡−ℎ)3 − 𝜇

2
𝑡 , 𝜎𝑟 = 𝑟2 3(𝑡+ℎ)5−(𝑡−ℎ)5

20(𝑡+ℎ)3−(𝑡−ℎ)3
7 𝑧 ←− IPE(Gau(𝜇𝑡 , 𝑣𝑡 , 𝑣𝑟 ), 𝑑, 𝑥)
8 𝐹𝑡 ←− MLP1 (𝑧, 𝐹𝑡 )
9 end

10 𝑟 = 𝑟 ∗ 𝜆, ℎ = ℎ ∗ 𝜆
11 until 𝑖 >= 𝑘 ;
12 for each 𝑡 in sampled positions do
13 {𝑐𝑚

𝑙
}𝑡 ←− MLP2 (𝐹𝑡 )

14 end

under different sampling levels to the neural network to predict the
weight of spherical harmonic coefficients 𝑐𝑚

𝑙
. The detailed algorithm

of our conical sampling is listed in the Algorithm. I.
After that, we resolve the integral in the multi-scattering function

using Monte Carlo integration with𝑀 sampled direction.

𝐿𝑚 =

∫
𝑆2

1
4𝜋

𝜎𝑠 (𝑝 (𝑡)) ·
𝑙max∑︁
𝑙=0

𝑙∑︁
𝑚=−𝑙

𝑐𝑚
𝑙
𝑌𝑚
𝑙
(𝜔𝑖 )𝑑𝜔𝑖 (14)

Where 𝑌𝑚
𝑙

are spherical harmonic basis functions and 𝑙𝑚𝑎𝑥 is the
maximum band. Note that the We follow the method in [Zheng
et al. 2021] to solve the RTE rendering equation using the numerical
integration method as Eq. 15.

𝑐𝑡 = Σ𝑁2
𝑗=1𝑇 (𝑥1, 𝑝 (𝑡)) (1 − exp (−𝜎𝑡 (𝑝 (𝑡))𝛿𝑡)) (𝐿𝑠 + 𝐿𝑚) (15)

Where 𝑝 (𝑡) = 𝑥 + 𝑡 ∗ 𝑑 , 𝑥 is defined as the first intersection of the
surface. Instead of computing intersection points using Eq. 9, we
use the sphere tracing algorithm to improve the accuracy. We can
find at least two intersection points and 𝑥2 is the farthest one. We
compute 𝑡 using the distance of 𝑥 and 𝑥2: 𝛿𝑡 = | |𝑥2−𝑥 | |2𝑁2

, 𝑡 𝑗 = 𝑗 ∗ 𝛿𝑡 .
Training process.We combine the appearance under direct light
and the translucent appearance under indirect light as our rendered
result:𝐶 = 𝑐𝑠 + 𝑐𝑑 + 𝑐𝑡 . We optimize 𝜎𝑠 , 𝐿, 𝛼 , Tr, diffuse albedo, and
coefficients of spherical harmonic using L1 RGB loss 𝐿rgb. To reduce
the complexity, we set 𝜉 equals to diffuse albedo. Moreover, we add
eikonal loss for 𝑥 and 𝑥2 to fine-tune the learned neural SDF network,
which ensures the accurate normal for surface intersection points.
We add Bilateral Smoothness Loss in [Yao et al. 2022] to encourage
𝛼 not to change rapidly. 𝑘3, 𝑘4 are hyper-parameter.

Loss = 𝐿rgb + 𝑘3 · 𝐿eik + 𝑘4 · 𝐿smoothness (16)
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4 EXPERIMENTS

4.1 Implementation Detail
We represent the geometry of the object following NeuS [Wang
et al. 2021]: 𝑓𝐺 : 𝑥 → (F , 𝑓𝐺 (𝑥)). The output of our neural SDF
network consists of a 256D geometric feature descriptor F and an
SDF value 𝑓𝐺 (𝑥). The geometric features F , gradients of the SDF
network ∇𝑓𝐺 (𝑥), and points 𝑝 are fed to color networks to predict
𝑐 . We obtain the normal 𝑛 using: 𝑛 = ∇𝑓𝐺 (𝑥)/| |∇𝑓𝐺 (𝑥) | |.

The on-surface color 𝑐 in our framework consists of the spatially
invariant color 𝑐𝑑 and reflection color 𝑐𝑟 . Following [Verbin et al.
2022] we compute 𝑐 using: 𝑐 = 𝑐𝑑 + tint ∗ 𝑐𝑟 . 𝑐𝑑 is predicted using
the same MLP structure in [Yariv et al. 2020], which takes position,
and geometric feature descriptor as the input. 𝑡𝑖𝑛𝑡 is a parameter
between 0 and 1, which determines the intensity of reflection light.
𝑐𝑟 is predicted using method in [Verbin et al. 2022], which takes
the computed reflection direction 𝑑 , position, and geometric feature
descriptor as the input.
For the surface reconstruction stage, we train our model with

100k iteration and sample 1024 camera rays on every step. We
uniformly sample 64 points to compute𝑤surf, 32 points to compute
𝑤in. We adopt the Adam optimizer [Kingma and Ba 2014] with
𝛽1 = 0.9, 𝛽2 = 0.999 and we set the initial learning rate to 0.0005.
The parameter 𝛾 is set to 0.5 initially. 𝑘1, 𝑘2 are set to 0.1 and 0.005.
The overall training time is about 8 hours using a single NVIDIA
GeForce RTX 3090 GPU.
For the rendering stage, we represent roughness 𝛼 as a neural

network: 𝑓𝛼 : (𝑥, 𝑛, F ) → 𝛼 ∈ 𝑅. The diffuse albedo is predicted
using neural network 𝑓𝑎 : (𝑥, 𝑛, F ) → albedo ∈ 𝑅3. transmission
albedo is predicted using the neural network 𝑓Tr : (𝑥, 𝑛) → Tr ∈ 𝑅.
We train our model with 80k iteration and sample 128x128 camera
rays per step. The scale factor 𝜆 is set to 0.5, 𝑟0 is set to the width
of the pixel in world coordinates and ℎ0 is set to the interval of
neighboring sampled points, where𝑀 is equal to 64 and 𝑁 is equal
to 32. 𝑘3, 𝑘4 are set to 0.1 and 0.05 separately.

4.2 Dataset
For "Syn-Trans" dataset.We choose 6 different objects to create
our synthetic scenes with different translucent materials, includ-
ing "Gummybear", "Stanford Dragon", "Yuanbao", "Ancient Dragon",
"Nail", and "Juice". We use the PrincipleBSDF shader in Blender
to simulate real-world materials such as jade, gummies, juice, and
plastics. The detail of each scene and material is shown in the Ap-
pendix. We set 90-120 views that uniform sampling on a sphere or
semi-sphere to render training images of resolution 800x800.
For "Real-Trans" dataset. We place the translucent object at

the center of an automatic rotating platform and shoot a video for
about 40 seconds in a black room. We extract 1 frame every 10
frames from the video for training and estimate camera poses using
COLMAP [Schonberger and Frahm 2016]. We extract 1 frame every
20 frames from the video to test the result of view synthesis. For
some translucent objects with complex optical properties, we add
an opaque object for camera pose estimation. Each real scene uses
about 100 images from a circular trajectory with a resolution of
960x540 pixels.

Table 2. Reconstruction evaluation result on Syn-Trans dataset in
Chamfer Distance(CD ↓).We compare the state-of-the-art reconstruction
method using neural implicit SDF network: NeuS[Wang et al. 2021], HF-
NeuS[Wang et al. 2022], Ref-NeuS[Ge et al. 2023]. The text with Bold
represents the best evaluation result while underline text represents the
second best result.

Scene NeuS HF-NeuS Ref-NeuS Ours
GummyBear 0.0047 0.0024 0.0023 0.0011

Stanford Dragon 0.6457 0.0070 0.0045 0.0037
Nail 0.1371 0.0380 0.0327 0.0022
Juice 0.0150 0.0170 0.0216 0.0132

Yuanbao 0.0085 0.0093 0.0089 0.0012
Ancient Dragon N/A 0.0059 0.0037 0.0022

4.3 Geometry evaluation
To export the mesh from the learned neural SDF network, we take
grid sampling within a fixed square space(from -1 to 1) to predict
every sampled point using the SDF network and obtain the recon-
structed mesh using the Marching-Cubes algorithm. We evaluate
geometry reconstruction results under the Syn-Trans dataset using
the Chamfer Distance(CD) between the ground-truth mesh and the
reconstructed one. The quantitative comparison result is shown in
Tab. 2 and the qualitative comparison is shown in Fig. 3. NeuS fails
to reconstruct the accurate surface due to nonnegligible color bias
from points away from the forward-face surface. HF-NeuS takes
the translucent appearance as the high-frequency details of geome-
try, which leads to a noisy and unsmooth surface. Ref-NeuS takes
advantage of the reflective highlights in captured images but pre-
dicts inaccurate shape, especially on concave surfaces. By contrast,
our method performs best due to the proper method to model the
density of points inside and the revised rendering function in the
training process. To evaluate our density field and weight function
learned from the multi-view image, we display the learned density
value, SDF value, and the weight of sampled points in Fig. 4. The
learned 𝛽 at this scene is 2.53𝑒−5, which is small enough to ensure
the invariant of density inside. The density of points inside, shown
in (b) is suitable for the constant extinction coefficient of homoge-
neous objects. As a result, the weight of points inside, shown in the
red line in (c) gradually declines when far away from the surface
points. The overall curve is close to an exponential function relative
to the distance to the surface, which is theoretically analyzed in the
Appendix. NeuS omits the weight of these points and the weight of
the second intersection plane is close to zero in their figure, which
is wrong as we can see the color of the second intersection plane in
the marker point at the left top figure.
Result on natural scene. The method in Sec. 3.3 is able to recon-
struct from arbitrary lighting and is not limited to the co-located
flashlight. We show our reconstruction result on natural scenes with
environment light in Fig. 6.
Result on Real-Trans. We show the reconstruction result for the
real scene in Fig. 5. There is no ground-truth geometry data in our
"Real-Trans" dataset sowe skip themetric comparison. For opaque or
nearly opaque parts of the object, there is a significant difference in
the reconstruction performance of Ref-NeuS compared to synthetic
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(a) Image (b) Ground truth (c) NeuS (d) HF-NeuS (e) Ref-NeuS (f) Ours

Fig. 3. Reconstruction result. We compare our result with the reconstruction method using implicit neural SDF: NeuS[Wang et al. 2021], HF-NeuS[Wang
et al. 2022], Ref-NeuS[Ge et al. 2023] on our proposed "Syn-Trans" dataset.

Fig. 4. Visualization of weight function and density value at one
camera ray. Figure (b) shows our density inside the object. The learned
𝛽 = 2.53𝑒−5 in Eq. 6. Figure (c) shows the weight function of ours and NeuS.
Note that the learned SDF value of NeuS is wrong as the interval between
two surfaces is too small.

scenes. The method in Ref-NeuS is highly related to the accurate
input view direction to compute reflection. In real scenes, it is hard
to predict accurate camera poses. The inaccurate view direction led
to the wrong surface in their result.

4.4 Evaluation of view synthesis
For evaluation of our neural rendering stage, we report the qualita-
tive result of the novel view in Fig. 7. For quantitative comparison
in Tab. 3, we compare the PSNR, LPIPS [Zhang et al. 2018], and
SSIM [Schonberger and Frahm 2016] with the ground-truth result
under the same lighting condition. IRON [Zhang et al. 2022] relies
on the pipeline of NeuS to reconstruct geometry at stage one and
decompose material at stage two. The rendering results in IRON
show no transparency because of the omitted translucent appear-
ance in their render equation and inaccurate geometry. The image
metric is high in our method owing to the correct reconstructed
geometry and learned scattering property. Note that IRON fails to
recover the geometry of "Ancient Dragon", so their rendering result

8
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(a) Image (b) NeuS (c) HF-NeuS (d) Ref-NeuS (e) Ours

Fig. 5. Reconstruction result in real scene. We evaluate the reconstruction result in the "Real-Trans" dataset. Note that, for the result in the last row, NeuS
fails to recover a complete shape so we display their result in another view.

(a) Image (b) Ground truth (c) NeuS (d) HF-NeuS (e) Ref-NeuS (f) Ours

Fig. 6. Reconstruction result on the natural scene. This scene has environment lighting, which is different from the co-located flashlight setting.

Table 3. Quantitative comparisons of rendering result under novel co-located flashlight views.We compare the inverse rendering method in IRON
[Zhang et al. 2022] with ours from photometric images using PSNR ↑, LPIPS ↓, and SSIM ↑.

IRON Ours-w/o Lm Ours-w/o cone Ours
PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM PSNR LPIPS SSIM

GummyBear 35.05 0.0322 0.976 34.47 0.0312 0.977 35.11 0.0275 0.979 39.17 0.0152 0.987
Stanford Dragon 28.43 0.1834 0.866 29.96 0.0739 0.917 41.90 0.0352 0.972 41.98 0.0356 0.972

Nail 25.99 0.0759 0.939 34.50 0.0318 0.976 36.76 0.0250 0.982 38.27 0.0217 0.986
Juice 27.71 0.0457 0.905 34.39 0.0623 0.970 38.95 0.0341 0.983 43.54 0.0172 0.988

Yuanbao 29.24 0.0648 0.957 32.16 0.0435 0.978 37.23 0.0245 0.983 40.18 0.0299 0.988
Ancient Dragon 14.57 0.1663 0.001 42.23 0.0235 0.988 43.72 0.0267 0.989 44.87 0.0194 0.991

only contains the black background. In Fig. 8, we show our view
synthesis on real scenes compared with IRON.

4.5 Ablation studies
Model scattering property for rendering. We obtain a rendered
result using Eq. 7, which can also used for novel-view synthesis.
However, the scattering property is omitted in this equation. As a
result, the learned transmission color contains noise and the quality
of images rendered at the novel view is low. We report the average

result of quantitative comparison in the second line of Tab. 4. The
term "stage two" represents the neural rendering method in Sec. 3.4.
The LPIPS score is almost the same in our experiments except for
the scene "nail". The LPIPS value of rendered images using Eq. 7
is 0.0068 compared with 0.0217. It is a limitation of our method in
optimizing parameters related to surface intersection points at thin
regions in our method.
Calculation of𝑤in The scattering property only exists at points
inside, so we restrict the sampling region to the interior of the object.

9



Conference acronym ’XX, June 03–05, 2018, Woodstock, NY Yuxiang Cai, Jiaxiong Qiu, Zhong Li, and Bo Ren

(a) GT Image (b) IRON (c) w/o Lm (d) w/o cone (e) Ours

Fig. 7. Rendering result of novel view in "Syn-Trans". Columns (c) and (d) are the result of ablation methods.

(a) GT Image (b) IRON (c) Ours

Fig. 8. Visualization of rendering at novel-view.

We use our sample method as a kind of importance sampling, on
account of preserving a clear boundary of inside points and outside
points. Besides, we restrict the sum of the𝑤in for all sampled points
to one, so that the integration of the𝑤surf and𝑤in after balanced by

𝛾 is equal to one, which is useful for deciding whether a ray hits the
surface or not. We apply a normalization for our weight 𝑤in∑

𝑤in
. We

show the ablation results on whether to use our sampling method
and normalization in Tab. 4.
Multi-scattering andmulti-level conical sampling. Themethod
in [Zheng et al. 2021] first proposes to resolve multi-scattering us-
ing SH. In their method, 𝑐𝑚

𝑙
is predicted using MLP, which takes

positional encoding of points and view direction as input, without
considering spatial information with multi-level sampling. Because
their method can not reconstruct geometry, we leave the comparison
with theirs as an ablation experiment. We implement their method
as "w/o cone", which removes the conical sampling module in our
method. Besides, to evaluate the effect of learned multi-scattering
properties, we design an ablation experiment "w/o Lm", which rep-
resents that we omit the 𝐿𝑚 in the final rendering equation. The
rendering result and metric comparison are shown in Fig. 7 and Tab.
3. When the translucent appearance is complex and highly corre-
sponds to the geometric shape of the unseen region, our method
greatly improves the rendering result.

5 CONCLUSION
In this paper, we propose a novel framework for high-fidelity surface
reconstruction and novel-view synthesis for translucent objects. Our
framework contains two stages. We first reconstruct the surface of
the translucent object using neural implicit SDF. We reparametrize
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Table 4. Results of experiments in ablation study.The first table is the
average result of Chamfer Distance. The second table is the average result
of image metrics.

Ours w/o norm w/o sampler
CD(Avg) 0.00393 0.00488 0.00549

PSNR LPIPS SSIM
Ours 41.33 0.0233 0.985

w/o stage two 36.54 0.0184 0.886

the density field inside the object using an estimated constant extinc-
tion coefficient. Unlike the proposed "S-density" in NeuS, our density
field maintains uniformity inside the object which is suitable for
the physical property of the homogeneous object. Moreover, to per-
form a better rendering result at novel views, we exploit the learned
geometry and learn translucent appearance using a neural repre-
sentation of participating media. We propose a multi-level conical
sampling method to learn complex translucent appearances related
to the overall geometry shape. To evaluate our method, we create
a dataset containing real-world translucent objects and synthetic
ones.
Limitation. The refraction phenomenon is overlooked in both our
reconstruction and rendering methods, which is crucial for highly
transparent objects like glass. As shown in Fig. 9, our method fails
to obtain a solid geometry and plausible rendering result. We leave
the improvement on such scenes as our future work. The method
for optimizing parameters in Sec. 3.4 leads to a poorer rendering
result at thin regions of an object. A constraint on the invariance
property of 𝜉 is required explicitly in more general scenes. Besides,
the scattering properties learned through training are limited by
the viewpoints used and co-located lighting conditions. Our learned
scattering property under insufficient training views performs badly
on novel-view synthesis, especially in the real scene. We leave the
modeling of more general scattering properties to future work.

(a) Test View (b) Reconstruction (c) Rendering(Test View)

Fig. 9. Failure case on real scene: "cactus2"
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A APPENDIX

A.1 Formula Derivation
We analyze the theoretical weight function on the constant den-
sity field in the section. Recall that we solve the volume rendering
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Table 5. Detailed camera setting, images, and material in our synthesis dataset.

Name Number of Images Camera Setting Material Parameters
Color Subsurface Color Specular Roughness Transmission

GummyBear 80 sphere 0.80,0.36,0.05 0.80,0.23,0.00 0.5 0.5 0.8
Stanford Dragon 100 semi-sphere 0.0,1.0,0.1 0.09,0.42,0.05 0.1 0.35 0.7
Yuanbao 80 sphere 1.0,0.7,0.05 1.0,0.33,0.0 0.1 0.4 0.8
Ancient Dragon 120 semi-sphere 0.79,0.67,0.44 0.50,0.80,0.33 0.5 0.75 0.8
Nail 80 semi-sphere (1,0,0), (0.1,0.23,1), (1,0.66,0,09) 0.63,0.63,0.1 0.1,0.8,0.4 0.95,0.95,0.9
Juice 100 semi-sphere 1.0,0.6,0.0 1.0,0.28,0.0 0.0 0.5 0.8
Doll 125 circle \ \ \ \ \
Cactus1 147 circle \ \ \ \ \
Cactus2 121 circle \ \ \ \ \

equation using Eq. 3. The density is assumed constant for points
inside the object, so we use 𝜎𝑡 to represent the constant value:
𝛼 𝑗 = 1 − exp(−𝜎𝑡 · 𝛿 𝑗 ). Substituting this formula into the weight
function, we get the weight function for points inside the object.

𝑤 𝑗 = 𝛼 𝑗

𝑗−1∏
𝑖=1
(1−𝛼𝑖 ) = (1− exp(−𝜎𝑡 ·𝛿 𝑗 )) · exp(−𝜎𝑡 · (𝑡 𝑗 − 𝑡1)) (17)

For uniformly sampled points, the 𝛿 𝑗 remains equal for all 𝑗 , so we
can simplify this equation to:

𝑤 𝑗 = (1 − exp(−𝜎𝑡 · 𝛿𝑡 )) · exp(−𝜎𝑡 · 𝛿𝑡 · ( 𝑗 − 1)) (18)

where 𝛿𝑡 = (𝑡𝑓 − 𝑡𝑛)/𝑁 . 𝑡𝑛, 𝑡𝑓 represents the near and far in the
NeRF. 𝑁 is the number of sampled points. For a camera ray, 𝛿𝑡
is fixed. We assume 𝜎𝑡 is constant so 𝜎𝑡 · 𝛿𝑡 can be regarded as a
constant value.

A.2 Additional Experiments
Comparsion with VolSDF. The comparison result of geometry
reconstruction with VolSDF [Yariv et al. 2021] is shown in Fig. 10 and
Tab. 6. The unlisted scenes are those VolSDF failed to reconstruct.
Comparsion with the method specifically designed for the
translucent objects. For the method in [Deng et al. 2022], they
utilize differentiable BSSRDF path-tracing to reconstruct translucent
objects. However, their reconstruction largely requires a suitable
geometry initialization and the geometric topology of the examples
in their paper is relatively simple. They assume that the rendered
model is BSSRDF, which does not comply with our dataset. Besides,
the GPU memory used in their method is too large, so we reduced
the image resolution in our dataset to 256x256 (512x512 used in the
original paper) in this experiment. Their reconstruction result on
the "gummybear" scene is shown in Fig. 11.

A.3 Details of Dataset

Table 6. Reconstruction evaluation result.
Scene VolSDF Ours
GummyBear 0.0036 0.0011
Juice 0.0152 0.0132
Yuanbao 0.0065 0.0012
Ancient Dragon 0.0550 0.0022

The detailed in-
formation in our
dataset can be found
in Tab. 5. The
camera setting rep-
resents the sam-
ple region of the
camera. "Sphere" means sampling camera at a unit sphere while

(a) Ground truth (b) VolSDF (c) Ours

Fig. 10. Reconstruction result compared with VolSDF.

Fig. 11. Method "InvTranslucent" in [Deng et al. 2022] failed to re-
cover the geometry.

"semi-sphere" represents sampling only on the upper surface of
the sphere. For the materials, we use the PrincipleBSDF shader in
Blender, which is an implementation of Disney BSDF [Burley 2015].
The values of "Color" and "Subsurface Color" are RGB values in
floating format. The omitted parameters like metallic, sheen, and
clearcoat are zero. The IOR is set to 1.3 in all scenes except for the
scene "Juice", which contains a glass cup. The parameters in scene
"Nail" correspond to three objects separately and no "Subsurface
Color" is set for this scene.
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