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Abstract

Transparent objects are commonly seen in indoor scenes but
are hard to estimate. Currently, commercial depth cameras
face difficulties in estimating the depth of transparent objects
due to the light reflection and refraction on their surface. As
a result, they tend to make a noisy and incorrect depth value
for transparent objects. These incorrect depth data make the
traditional RGB-D SLAM method fails in reconstructing the
scenes that contain transparent objects. An exact depth value
of the transparent object is required to restore in advance
and it is essential that the depth value of the transparent
object must keep consistent in different views, or the recon-
struction result will be distorted. Previous depth prediction
methods of transparent objects can restore these missing
depth values but none of them can provide a good result in
reconstruction due to the inconsistency prediction. In this
work, we propose a real-time reconstruction method using a
novel stereo-based depth prediction network to keep the con-
sistency of depth prediction in a sequence of images. Because
there is no video dataset about transparent objects currently
to train our model, we construct a synthetic RGB-D video
dataset with different transparent objects. Moreover, to test
generalization capability, we capture video from real scenes
using the RealSense D435i RGB-D camera. We compare
the metrics on our dataset and SLAM reconstruction results
in both synthetic scenes and real scenes with the previous
methods. Experiments show our significant improvement in
accuracy on depth prediction and scene reconstruction.

1. Introduction
Transparent objects frequently appear in our daily life, in-
cluding glasses, goblets, plastic objects, vases, etc. Because
of the nature of transparent materials, the light will reflect
and refract on the surface of transparent objects, which will
cause errors for the commonly used depth camera. Fig. 2
show this ambiguity: the depth captured by the camera is the
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Figure 1. RGB-D reconstruction result comparison in the real
scene. Subfigures (b) and (c) show the reconstruction result using
ElasticFusion [38] with predicted depth data from the state-of-the-
art transparent object depth prediction method: ClearGrasp [31]
and TransCG [8]. Subfigure (d) shows our reconstruction result. In
(b) and (c), the transparent object can not be well reconstructed.
Compared with them, our model performs well in reconstruction.

distorted result of the object behind.

SLAM(Simultaneous localization and mapping) is a popular
topic in computer vision and robotic fields. There are lots of
SLAM methods [7, 25, 38] that take RGB-D as their input to
reconstruct the scene and recover the motion of the camera.
The RealSense [19] and Kinect [12] are often used to capture
the RGB-D data and are common input devices for RGB-D
SLAM. However, due to the reason we state above, these
cameras can not estimate the depth of transparent objects. So,
restoring the correct depth of transparent objects is critical
in reconstruction.

Many depth completion methods for indoor scenes train and
test in the TUM dataset [34], which do not contain transpar-
ent objects. Also, there are many attempts [8,31,44] to try to
predict the depth of transparent objects using different deep
neural network models. However, these monocular-based
methods perform poorly when using their predicted depth in
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Figure 2. Effect of the transparent object. The left figure shows that the ray path changes when there is a transparent object, which causes
inaccurate depth data. In (a), a red box shows where the transparent object is located. (b) shows the depth data from the depth camera. The
region around the transparent object is noisy and incorrect and (c) shows the reconstruction result using these depth data. The transparent
object is missing. (d) and (e) are our depth prediction results of the transparent object in different views. (f) is our reconstruction result.

the SLAM reconstruction. We attribute it to the depth incon-
sistency problem between frames. Estimating the consistent
depth that can be used for SLAM is a challenge. Previous
work like [3, 9, 23, 35] has mentioned the similar problem.
Since depth between frames is strictly constrained by camera
trajectory, monocular depth estimation can not ensure depth
predicted under the same absolute scale. So instead of using
a single frame to predict the depth of the transparent object,
we choose multiple views as our input and build a connec-
tion between adjacent RGB images to keep consistency in
prediction.

In this paper, we propose a stereo-based transparent depth
prediction model based on DPSNet [17] to keep consistency
in prediction, which can be directly used for the SLAM
reconstruction of transparent objects. Our model uses the
plane sweep stereo module to build a spatial consistency
restriction between sequential input images. To obtain scale
information on the more-accurate background depth, we
separate the transparent object using the predicted mask and
transform it to point clouds. We use a designed lite PointNet
based on [27, 28] to learn this information and combine it
into our model. We further design another surface normal
prediction branch to assist and refine our depth prediction
result. The detail of our model can be found in Sec. 3. To
make a real-time reconstruction of the transparent object, we
embed our network into ElasticFusion [38] as our pseudo-
SLAM method in Sec. 4.

There are many datasets for the transparent object, such as
ClearGrasp dataset [31], TransCG dataset [8], and Omni-
verse Object dataset [44]. However, all of them contain only
single image segmentation data and do not have video seg-
mentation data of transparent objects. In [45], a natural scene
video dataset for the transparent object is proposed but needs
the ground truth depth value of transparent objects for model
training. So we use Blender to create a synthetic dataset for

our depth prediction model. Besides, we use the RGB-D
camera to capture real scene data to evaluate the generaliza-
tion capability of our model and test the 3D reconstruction of
these scenes. We also test the reconstruction result using the
previous depth prediction method of the transparent object
in our pseudo-SLAM pipeline. Fig. 1 shows the result com-
parison. Besides this figure, a variety of experiments in Sec.
5 demonstrate that our proposed method makes a significant
improvement.

In summary, our contributions are:

• We propose a real-time 3D transparent object recon-
struction method without any prior knowledge require-
ment of the scene using a stereo-based depth prediction
model.

• We construct a new RGB-D dataset of transparent ob-
jects with ground truth depth data for model training to
predict the depth of transparent objects in continuous
RGB-D data sequences.

2. Related Work
2.1. Depth Prediction From RGB Images

Many prior works use the neural network to predict dense
depth from RGB images. Earlier methods such as Eigen et
al. [6] used convolution neural networks to learn the global
structure of the scene from a single RGB image and predict
depth. Other methods [15, 21, 32, 41] take advantage of the
latest network structure to predict more accurate depth. Qi et
al. [29] propose a depth-to-normal structure and a normal-to-
depth structure to iteratively refine the prediction. However,
monocular depth prediction suffers from the problem of scale
consistency and depth consistency. Many works [3, 10, 11,
33, 46] train their model use the multi-view consistency loss
to resolve it.



The stereo-based method is also popular for depth prediction
tasks. These methods predict the depth map using two views
or multiple views. Inspired by the traditional stereo matching
techniques, [13, 17, 18, 42, 43] use the neural network to re-
place some processing progress to get an estimated disparity
or depth. [5, 6, 21, 37] propose refinement modules to make
a progressive reconstruction. However, none of them can
predict the depth of transparent objects.

2.2. Depth Prediction of Transparent Object

Transparent objects usually have refractive and reflective
properties, which cause errors and inaccuracy in obtaining
depth data from RGB-D cameras. It is also a challenge for
depth completion in scenes that contain transparent objects.
Previously work focused on using the trained network to fix
up the depth of transparent objects. Sajjan et al. [31] uses
three models to predict mask, surface normal, and occlusion
boundary separately, followed by a global optimization func-
tion to get the result. Zhu et al. [44] proposes that the depth of
the transparent object can be inferred from the opaque object
nearby using a trained local implicit depth function(LIDF).
Fang et al. [8] uses an encoder-decoder model to predict
depth using RGB and depth. Xu et al. [40] first restores
the point cloud and then combines the point cloud with the
RGB image to produce a complete depth map. However, the
remaining point clouds are often too lacking and noisy to
restore a complete shape. These methods perform well in
single images but poorly in transparent object reconstruction.
By contrast, our prediction method gets suitable depth data
between frames that perform well in the reconstruction task.

2.3. Transparent Object Reconstruction

It is also a challenge for transparent object reconstruction,
and there is no previous work on real-time reconstruction
using end-to-end depth prediction. [22, 26, 30] draw support
from additional known information and pre-computed envi-
ronment information. Zhu et al. [45] reconstruct the scene
and transparency respectively, which is time-consuming. Alt
et al. [2] propose a method to reconstruct via depth camera.
In their method, the background must be first estimated using
a video sequence that excludes transparent objects. Unlike
these existing methods, we introduce a stereo-based model
for depth prediction and build a real-time transparent recon-
struction method without any prior knowledge requirement
of the scene.

2.4. Point-based 3D Learning

Traditional convolutional neural networks can not be di-
rectly applied in point clouds due to their unordered attribute,
which means the point of objects can be ordered as any com-
bination of sequences. Pioneered by PointNet [27], several
works like [1] use the MLP layer for processing the point
cloud. Because the MLP module lacks the capacity to learn

geometric relationships between 3D points, [28, 36] propose
a hierarchical architecture to learn from 3D geometric struc-
tures. However, MLP-based models, as discussed in [39],
do not consider the connection and neighbouring relation-
ship with other points as they usually use the max pooling
function to get together the features of each point. More-
over, Mao et al. [24] propose that simply applying MLP
network to point clouds may not always work in practice
as we considered. [14, 20, 39] divide the space into 3D vox-
els or grids so that the points can be regularly arranged.
But the voxelization operation leads to an inevitable loss of
detailed geometric information. For our task, the original
trusted point of the transparent objects is extremely sparse.
It is hard to learn information using these points. Besides,
the voxel-based or grid-based method is too complicated and
slows in practice with a large resolution, so we choose the
MLP-based PointNet and lightweight it to learn information
from background points around the transparent object.

3. Transparent Object Prediction for SLAM
Reconstruction

In Sec. 1, we have discussed that the consistent depth value
in different views is essential for the RGB-D reconstruc-
tion of transparent objects. In order to make a consistent
depth prediction for the transparent object, we take advan-
tage of the spatial consistency of the RGB information be-
tween sequential input images and the scale information of
the more-accurate background depth. We first obtain a cost
volume from the plane sweep stereo method for the RGB
channels using sequential images that contain transparent
objects. The detail of this step can be found in Sec. 3.1. Then
we aggregate it with a point feature that is extracted from the
background depth of the current frame(i.e. depth out of the
masked transparent region). The detail can be found in Sec.
3.2. Then a consistent transparent object depth can be recon-
structed from a depth regression module. Inspired by [31],
we further design another surface normal prediction branch
parallel to the depth prediction branch in our network, which
helps to provide stronger visual cues to assist the accuracy
of depth prediction. We only use this module in the training
process and disable this module in the inference process. The
overview of our method is shown in Fig. 3.

3.1. Plane Sweep Stereo for Consistency Con-
straints

The plane sweep stereo proposed by [16] proposes to divide
the depth space D into L average parts. The baseline of the
plane sweep stereo method is: back projecting the image
to successive virtual planes divided from the 3D space and
measuring the cost on each plane. The costs then form a
cost volume. Following [17], we use extracted features from
a pyramid convolutional network with the pooling module
to represent the image. We use the same equation as their



Figure 3. Overview of our proposed method. The model takes at least two RGB, raw depth data of the current frame captured by the
depth camera, and a mask as input. The output depth is used in the RGB-D SLAM reconstruction method: ElasticFusion to make a scene
construction. We introduce our depth prediction model in Sec. 3 and we introduce our pseudo-SLAM system in Sec. 4, which combinates
our model and the ElascticFusion algorithm.

work for the warp function that describes the back-projecting
process (1).

p̃ ∼ Kexp(ξ̂)[(K−1p)dl 1]T (1)

where the depth value for each plane l is represented as dl.
p̃ and p are the homogeneous coordinate of pixels in the
warped view and current view. K refers to the camera’s
intrinsic matrix, and exp(ξ̂) is the transformation matrix
between these views represented in Lie algebra. The warped
feature f̃ is the interpolated value of the neighborhood image
feature using p̃.

Assumes that the shape of the feature extracted from the
image is (B,C,H,W ), where B represents the batch size,
C represents the channel of the image feature, H,W is one-
quarter of the input image height and width. For the later
content, these symbols represent the same meaning as above.
We combine the warped feature with the current feature at
each plane in the second dimension to get a concatenated
feature with a shape of (B, 2C,L,H,W ). For more than one
neighboring image, we compute the concatenated feature
between each neighboring image and the current image and
take the average of them. Finally, we use the cost generation
module in [17] to produce a cost volume with the shape
of (B,L,H,W ). Since the plane sweep stereo considers
the motion between neighboring RGB frames, it brings a
relative constraint to the subsequent modules and ensures
overall consistency of depth prediction.

3.2. Point Cloud Feature Fusion for Aggregation

Since the plane sweep stereo only considers the relative
depth scale, the above cost volume still lacks absolute scale

information for the scene geometries to make an accurate
prediction. We take advantage of the more-accurate back-
ground depth and design a lite point net module to inform
the depth prediction network of the scaling information. The
background depth is obtained by excluding the mask region
of the transparent object in raw depth data. Unlike the pre-
vious method that directly combines raw depth data with
RGB data to form input with four channels, we transform
background depth data to point clouds. It is advantageous
that point clouds contain spatial information about the scene,
such as the arrangement of objects. We use the equation in
(2) to generate point clouds from background depth data.

P (u, v) = (K−1p)d (2)

Given a pixel coordinate (u, v) and its depth d, p is the
homogeneous coordinate of it, P (·) represents its point cloud
vector, which can be computed using the camera’s intrinsic
matrix K. Through 1d convolution and feature transform
module proposed in [27, 28], we obtain a matrix with S
channel of each point cloud which represents point cloud
features that contain spatial information. Inspired by [17],
we fuse the point cloud feature with the RGB feature from
current images into the above cost volume. The point cloud
features are reshaped to (B,S,H,W ) and combined with
RGB features at the second channel to get the fusion feature
with the shape of (B,S +C,H,W ). For every plane in cost
volume, the cost value (B, 1, H,W ) is concatenated with
these fusion features at the second dimension. After that,
a dilated convolutional context network, like the structure
in [17] will accumulate details and reduce the combined cost
volume back to the original shape so that it can be fed into



the prediction network.

3.3. Depth Prediction

The depth prediction module transforms the cost volume
with the shape of (B,L,H,W ) to a probability volume with
the shape of (B,L,H,W ) using the softmax function at the
second dimension. The probability volume represents the
probability for each pixel laying on each depth plane. Then
we regress the final depth result using the method proposed
in [18]. As the surface normal of the transparent object can
provide stronger visual cues, proposed in [31], we design a
normal predictor branch paralleling with the depth prediction
branch to further restrains the result of the depth prediction
branch. In this branch, we transform the depth plane to the
normal plane using the equation in (3).

ni = ⟨Pw
i × Ph

i ⟩; (3)

where P (·) represents point cloud vector defined in (2). Pw

is defined as P (u + 1, v) − P (u, v) and Ph is defined as
P (u, v + 1) − P (u, v). To accumulate more details in the
normal map, we use another five-layer convolutions network
to process the normal map before it gets summed (4).

n =

L∑
i=0

CNN(ni · σ(li)) (4)

where σ(li) is the probability value of plane li. We train our
model using the loss function blow (5):

L = ||D̂ −D∗||H + α||N̂ −N∗||H (5)

Where the first term represents the depth loss that penal-
izes depth inaccuracy. D̂ and D∗ denote the ground truth
depth and the prediction result. Similar to depth loss, the
second term penalizes normal inaccuracy. N̂ and N∗ denote
the ground truth normal and our predicted result. ∥·∥H de-
notes the Huber norm function. α is the weight parameter.
In practice, we find that the depth of transparent objects is
concentrated only in a few adjacent planes. If we train our
model with the loss function in the mask region of transpar-
ent objects, most planes are not well penalized and may lead
to wrong predictions in the real scene. In order to learn to
regress the accurate depth in the different planes, we predict
the whole image but penalize our model with a weighted
final loss. We compute the loss function (5) in the masked
region of the transparent object and unmasked region. The
final loss is defined as (6).

Loss = βLmasked + (1− β)Lunmasked (6)

A higher β value means we care more about the region of
transparent objects than its background.

Algorithm I: Pseudo-SLAM for transparent object re-
construction
Data: Image sequences I={I1, I2, . . . , Im};
Depth data sequences D={D1, D2, . . . , Dm};
Number of input image w ;
Camera intrinsic matrix K ;

1 initialization i = 1 ;
2 repeat
3 predict mask of transparent object M̂ using Ii ;
4 exclude mask region and transform Di to point

cloud Pi ;
5 extract RGB feature Fi using Ii ;
6 foreach j = 1, . . . , w − 1 do
7 compute Fi+j , Pi+j same as above ;
8 compute relative motion Rj and tj on Pi, Pi+j

using ICP algorithm ;
9 warp Fi+j to ˜Fi+j using Rj , tj ;

10 build aggregated feature f using ˜Fi+j and Fi ;
11 end
12 compute the average of f and generate cost volume ;
13 cost aggregation using Fi and extracted feature from

Pi ;
14 make a prediction of the transparent object and

renew the original depth Di ;
15 go through ElasticFusion pipeline;
16 i← i+ 1 ;
17 until i >(m− w + 1);

4. Pseudo-SLAM System
To make a reconstruction of scenes, we embed our depth
prediction model with the previous RGB-D SLAM frame-
work: ElasticFusion. We use the prediction network pro-
posed in [45] to get a mask of the transparent object. With
this mask, we can strip the error depth data in the real scene
to get the point cloud of the background, which can be used
in estimating the rotation matrix, translation vector, and ag-
gregation module in our model. The overall algorithm is
shown in 17. We use a queue to cache results already com-
puted in the previous steps to improve the efficiency of our
pseudo-SLAM system.

5. Experiments
5.1. Data Creation

There are many datasets for the transparent object, such
as ClearGrasp dataset [31], TransCG dataset [8], Omiverse
Object dataset [44]. None of them contains sequences of
images. Zhu et. al [45] propose a real scene dataset, which
doesn’t contain ground truth depth data for training.

Since relevance from different perspectives is key for re-



Method
Metrics

RMSE ↓ REL ↓ MAE ↓ δ1.05 ↑ δ1.10 ↑ δ1.25 ↑
ClearGrasp [31] 0.267 0.211 0.237 15.17 25.92 62.72
LIDF [44] 0.571 0.269 0.368 53.64 62.00 68.35
TransCG [8] 0.153 0.089 0.126 42.94 69.19 93.83
Ours 0.148 0.077 0.122 50.30 77.76 95.92

Table 1. Metric comparison result for transparent object depth prediction. ↑ means higher is better and ↓ means lower is better. Before
evaluation, we re-train the previous network on our RGB-D video dataset using the pre-trained weight provided by them.

straining depth consistency, we choose to create a synthetic
video dataset instead of training on existing datasets. Using
the open-source model, we build different scenes in Blender.
We create 15 scenes for training and 5 scenes for valida-
tion. Each scene contains about 300-400 RGB images with
ground truth camera trajectories, masks, and depth of the
transparent object. Our dataset contains various basic glass
objects in daily life: glass cups, glass goblets, wine cups, and
square transparent boxes. Further metrics comparison and re-
construction evaluation are made on our dataset to show the
advance of our method. To test the generalization capability
of our model, we recorded RGB images and depth data by
RealSense D435i RGB-D camera at the frame rate of 30 Hz
and 640x480 resolution in real scenes. Each scene contains
about 400-600 frames and different transparent objects.

5.2. Implementation Details

The model is implemented using the PyTorch framework.
The Pseudo-SLAM is implemented using C++ and the
Libtorch framework. All experiments run on the Intel i7-
8700K CPU and two NVIDIA GeForce GTX 1080Ti GPUs.
We set L = 50 when initializing our model and α = 0.5,
β = 0.9 when initializing the loss function. Before train-
ing, we scale the input depth to the [0, 1] range to fix depth
space. For the training process, we set the training image and
depth map resolution to 320x240 and the Adam optimizer
with an initial learning rate of 0.0002. We use the batch size
of 16 in training and validation. The processing speed of
Pseudo-SLAM is about 15 FPS on average. The detail about
real-time performance can be found in the supplemental
material.

5.3. Depth Estimation Evaluation

We choose Root Mean Squared Error (RMSE), AbsoluteRel-
ative Difference (REL), Mean Absolute Error (MAE), and
Threshold δ as the main metrics to evaluate the precision of
the predicted depth map. Their definition is below:

RMSE:
√

1
|M̂|

∑
d∈M̂ ∥d− d∗∥2

REL: 1
|M̂|

∑
d∈M̂ |d− d∗| /d∗

MAE: 1
|M̂|

∑
d∈M̂ |d− d∗|

Threshold δ is the percentage of pixels for the predicted
depth map that meets the condition: Max

(
di

d∗
i
,
d∗
i

di

)
< δ.

Following [31], δ is set to 1.05, 1.10, 1.25. M̂ denotes the
mask of transparent object in images. d and d∗ denote ground
truth depth data and predicted depth data. Note that we regard
depth out of range [0, 3] as too far from the camera and
remove them.

In our metrics comparison, we train ClearGrasp, LIDF, and
TransCG using our dataset with the default training parame-
ter provided in their configuration files. We use their valida-
tion API to compute these metrics. The quantitative result
in Tab. 1 shows that our model improves all performance
compared with previous depth prediction methods of the
transparent object.

5.4. Transparent Object Reconstruction Evaluation

We test our Pseudo-SLAM method both in our synthesis
dataset and in real captured scenes. In synthesis scenes, we
use the ground truth mask and relative motion R, t. In real
scenes, we use the prediction mask and estimated motion.
For the previous depth prediction method of transparent ob-
jects, we replace our model with theirs in the Pseudo-SLAM
pipeline to make a reconstruction. Qualitative comparison of
reconstruction result and quantitative comparison of camera
trajectories performance is shown in Tab. 2 and Fig. 4. The
result of the reconstruction evaluation is shown in Tab. 3.

For computing camera trajectories based on our synthetic
dataset, we use the visual odometry provided by Elastic-
Fusion instead of an initial estimation through ICP. Metric
”ATE” represents absolute trajectory error, ”R.RPE” and
”T.TPE” represents rotation/translation relative pose error.
For reconstruction evaluation, we use the mesh evaluation
established by [4]. We regard camera trajectories and recon-
struction results estimated by ground truth RGB-D data as
the reference data. We align the reconstruction result of point
clouds with reference one and transform them to mesh using
ball pivoting in the Open3D library. Since the LIDF method
doesn’t provide an inference API for their model, we skip



(a) Glass Cup (b) Glass Cup(down) (c) Goblet (d) Cylindric Cup (e) Long-Necked Cup (f) Vase

Figure 4. Reconstruction result. From top to bottom are the RGB image of this scene; the result of ClearGrasp and TransCG; our result.
Our reconstruction result of the transparent object is boxed with the red line. (a), (b) and (c) are the synthetic scene in our dataset. (d), (e)
and (f) are real scenes captured by the RGB-D camera.

ClearGrasp TransCG Ours
Scene ATE ↓
Glass Cup 0.5210 0.2840 0.0301
Glass Cup(down) 0.4653 0.1580 0.1120
Goblet(part) 0.0152 0.0210 0.0736
Goblet 0.5892 0.6580 0.1020
Snack Plate 0.3237 0.6270 0.0912

R.RPE ↓
Glass Cup 0.00378 0.00201 0.00143
Glass Cup(down) 0.00649 0.00513 0.00288
Goblet(part) 0.00129 0.01880 0.00138
Goblet 0.00491 0.00516 0.00255
Snack Plate 0.00247 0.00199 0.00206

T.RPE ↓
Glass Cup 0.00318 0.00185 0.00183
Glass Cup(down) 0.00786 0.00564 0.00345
Goblet(part) 0.00113 0.00139 0.00107
Goblet 0.00291 0.00317 0.00173
Snack Plate 0.00169 0.00164 0.00148

Table 2. Result of trajectory evaluation in all validation scenes.
A lower result means less impact for the transparent object and
higher depth prediction accuracy. The trajectory unit in evaluation
is m.

the experiment on their performance of reconstruction.

From Fig. 4, we can see the improvement of our recon-

Method Chamfer ↓ Prec ↑ Recall ↑ F-Score ↑
ClearGrasp 0.055 0.540 0.580 0.551
TransCG 0.046 0.627 0.651 0.618
Ours 0.027 0.650 0.721 0.666

Table 3. Reconstruction evaluation result. We use the mesh eval-
uation metrics proposed in [4] to compare the reconstruction result
of scenes. Our result shows significant improvement compared with
existing methods.

struction result of the transparent object. In Sec. 1, we have
discussed that a consistent depth value in different views is
essential for the RGB-D reconstruction of transparent ob-
jects. Previous depth prediction methods perform badly on
depth prediction for the transparent object in different views,
even with a mask. As shown in the second and third rows,
the shape of the transparent object is disordered and the
background objects are also affected by the wrong predicted
depth of the transparent object. By contrast, our method
can significantly improve the reconstruction result of the
transparent object. Tab. 2 and Tab. 3 further show our im-
provement in metrics performance. Our lower reconstruction
evaluation error means that the position of point clouds in
our reconstruction result is close to the ground truth set of
point clouds.

5.5. Ablation Study

Normal Prediction. In Tab. 4, we compare the model using
the normal prediction module and without using this module.
Surface normal provides a lot of geometric information about
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Abs Error(5x) Abs Error(5x)

Figure 5. Visualizing the depth data for goblet scene. From left
to right: ground true depth, depth predicted from model training
without and with normal predictor module.

Normal Trajectory RMSE REL MAE δ1.05 δ1.10 δ1.25

✓ × 0.156 0.083 0.130 35.69 65.35 94.62
× ✓ 0.178 0.087 0.148 41.79 64.13 87.92
✓ ✓ 0.148 0.077 0.122 50.30 77.76 95.92

Table 4. Ablation study on normal predictor and trajectory.
Metrics evaluated with/without the normal module or with/without
a ground-truth trajectory in training are listed in this table.

an object, especially a transparent object. To further adjust
the probability volume with geometric information, instead
of an individual normal prediction model, we choose an
additional branch to exploit the probability volume generated
by the model. The visualization of the result in Fig. 5 shows
that the normal loss restrains the depth prediction result,
especially at the edge of an object. Note that the error in
the left part of the edge is mainly caused by image resizing.
With the additional normal predictor, the predicted depth is
more accurate.

Trajectories. In the synthesis dataset, ground truth cam-
era trajectories are known, through which we can easily
obtain the rotation matrix and translation vector. In this situ-
ation, a precise cost volume can be generated. However, pre-
estimation of camera trajectories is required in real scenes.
We evaluate our model in the synthesis dataset using esti-
mated camera trajectories instead of the ground truth one.
The result is shown in Tab. 4. The result gets worse without
the ground truth camera trajectories, but it is still decent
since the synthesis data contain less noise.

Number of neighboring frames. We examine the perfor-
mance of our model with different numbers of neighboring
input images, we use w to represent this parameter. In this
experiment, we test RMSE, MAE, and REL metrics under
different w sizes from 1 to 10. The result is shown in Fig. 6.
Note that, for w = 1, we set a copy of the current image as its
neighborhood, an identity mat as the rotation matrix, and a

Figure 6. Ablation study on selecting the number of neighboring
images. We test w from 1 to 10 to figure out the effect of the number
of neighboring images for depth prediction and corresponding time
consumption.

zero mat as the translation vector. From the left of this figure,
we can find that more viewpoints are helpful to reduce the
noise in cost volume. From the right of this figure, we can
find that as the number of neighboring images increases, the
inferring time rapidly grows. In 2-views, the time used for
inference is about 0.2s. Image input for each additional view
costs about an extra 0.08s in generating cost volume. The
point of inflexion found in this figure is w = 2. The result is
worse for w = 1, which doesn’t consider the relative motion
between neighboring images. For w >= 2, the growth trend
on metrics slows down a lot, but time consumption is still in-
creasing steadily. To balance the running time and prediction
accuracy, we choose w = 2 in all experiments.

6. Conclusion
Compared with previous work on transparent object recon-
struction, we propose a real-time 3D reconstruction method
without any prior knowledge requirement of the scene. Our
reconstruction method is based on ElasticFusion with a pro-
posed stereo-based depth prediction model. In our model, we
use plane sweep stereo to take advantage of the spatial con-
sistency of the RGB information between sequential images
and fuse our model with the scale information of the back-
ground depth. We design a surface normal prediction branch
to further restrict the depth prediction result. Experiments
show our model improves the metrics of depth prediction for
transparent objects and the result of our 3D reconstruction
method performs better in real scenes.

Limitation There are certain categories of transparent ob-
jects lacking in our current dataset such as handcrafts made
of glass, which could be added in the following research. Our
reconstructed results also show a lack of geometric details.
Scenes that contain multiple transparent objects that occlude
with each other are also hard to handle by our algorithm,
which we will investigate in future works.
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