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A Additional Details for the Control Framework

A.1 Additional Algorithm Details
Our control framework for the coupled solid-fluid systems consists
of the following components:
• Two actor networks 𝜋1 (·;𝜙1) and 𝜋2 (·;𝜙2).
• Two target actor networks 𝜋1 (·;𝜙 ′1) and 𝜋2 (·;𝜙 ′2).
• Two value function networks 𝑄 (·;𝜃1) and 𝑄 (·;𝜃2).
• Two target value function networks 𝑄 (·;𝜃 ′1) and 𝑄 (·;𝜃 ′2).
• Pink noise for exploration.
• A pretrained autoencoder for fluid velocity field feature.

Velocity Feature Extraction. Prior to the reinforcement learning
(RL) training phase, we conduct a comprehensive data collection
phase, wherein fluid velocity fields dataX are amassed from a diverse
array of simulated trajectories by executing randomized actions.
Subsequently, the dataX is employed to train the auto-encoder, with
the optimization process guided by the Mean Squared Error (MSE)
loss function:

Lmse =
1
𝑛

𝑛∑︁
𝑖=1
∥𝑥𝑖 − 𝐷 (𝐸 (𝑥𝑖 ))∥2, 𝑥 ∈ X (1)

where 𝐸 (·) denotes the encoder and 𝐷 (·) denotes the decoder. Then
in both the sampling and training phases of RL policy, we employ the
low-dimensional latent representations derived from the pre-trained
𝐸 (·) as the fluid velocity field feature.

Exploration Noise. In the realm of exploration strategies, determin-
istic methods typically incorporate noise into action selection, often
employing Gaussian white noise or Ornstein-Uhlenbeck (OU) noise,
which is analogous to Brownian motion [Uhlenbeck and Ornstein
1930] and called red noise. Nevertheless, these noise mechanisms
are often insufficient to promote effective exploration. White noise,
characterized by its time-independence, often results in prolonged
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Algorithm 1: RL with improved Bellman operator
Initialize critic𝑄1,𝑄2 and actor 𝜋1, 𝜋2 with 𝜃1, 𝜃2, 𝜙1, 𝜙2
Initialize target networks 𝜃 ′1 ← 𝜃1, 𝜃

′
2 ← 𝜃2, 𝜙

′
1 ← 𝜙1, 𝜙

′
1 ← 𝜙1

Initialzie replay buffer D
for 𝑡 = 1 to𝑇 do

Select action 𝑎 with pink noise based on 𝜋1 and 𝜋2
Execute action 𝑎, observe reward 𝑟 , new state 𝑠′ and done 𝑑
Store transition tuple (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑 ) in D // 𝑑 is the done flag
for 𝑖 = 1, 2 do

Sample 𝑁 transitions { (𝑠, 𝑎, 𝑟, 𝑠′, 𝑑 ), (𝑠′, 𝑎′, 𝑟 ′, 𝑠′′, 𝑑 ′ ) }
from D

Sample 𝐾 noises 𝜖 ∼ N(0, 𝜎 )
𝑎′ ← 𝜋𝑖 (𝑠′;𝜙

′
𝑖 ) + clip(𝜖, −𝑐, 𝑐 )

𝑄̂ (𝑠′, 𝑎′ ) ← min𝑗=1,2

(
𝑄 𝑗 (𝑠′, 𝑎′;𝜃

′
𝑗 )
)

Calculate Softmax-𝑄̂𝛽 (𝑠′ )
𝑦𝑖 ← 𝑟 + 𝛾 (1 − 𝑑 )Softmax-𝑄̂𝛽 (𝑠′ )
Do same with (𝑠′, 𝑎′, 𝑟 ′, 𝑠′′, 𝑑 ′ ) to get 𝑦′𝑖
𝑦𝑖 ← max

(
𝑦𝑖 , 𝑟 + 𝛾 (1 − 𝑑 )𝑦′𝑖

)
Update the critic 𝜃𝑖 according to Bellman loss:
1
𝑁

∑
𝑠 (𝑄𝑖 (𝑠, 𝑎;𝜃𝑖 ) − 𝑦𝑖 )2

Update actor 𝜙𝑖 by policy gradient:
1
𝑁

∑
𝑠

[
∇𝜙𝑖 (𝜋 (𝑠 ;𝜙𝑖 ) )∇𝑎𝑄𝑖 (𝑠, 𝑎;𝜃𝑖 ) |𝑎=𝜋 (𝑠 ;𝜙𝑖 )

]
Update target networks:
𝜃
′
𝑖 ← 𝜏𝜃𝑖 + (1 − 𝜏 )𝜃

′
𝑖 , 𝜙

′
𝑖 ← 𝜏𝜙𝑖 + (1 − 𝜏 )𝜙

′
𝑖

end
end

exploration periods, which can lead to insufficient state space cover-
age and the potential neglect of high-reward regions. In contrast, red
noise, a time-dependent stochastic process, significantly enhances
exploration efficiency and is therefore recommended as the default
exploration strategy for DDPG [Lillicrap et al. 2016]. Nonetheless,
the action space constraints are susceptible to being breached due
to the indefinite escalation of variance over time. Consequently, we
employ pink noise [Eberhard et al. 2023], a stochastic process that
serves as an intermediary between white and red noise, to serve
as the standard exploration noise for our deterministic off-policy
agent.

Prior to introducing pink noise, we first explicate the concept of
colored noise. A stochastic process is designated as colored noise
with a colour parameter 𝜂 if the signal 𝜀 (𝑡) extracted from the
random process exhibits the property:

|̂𝜀 (𝑓 ) |2 ∝ 𝑓 −𝜂 , (2)

where 𝜀̂ (𝑓 ) = 𝐹 [𝜀 (𝑡)] (𝑓 ) denotes the Fourier transform of 𝜀 (𝑡) ,
with 𝑓 being the frequency, and |̂𝜀 (𝑓 ) |2 is termed the power spectral
density (PSD). For instance, when 𝜂 = 0, the signal is temporally
uncorrelated, implying that all frequencies are equally represented.
This type of noise is classified as white noise. Conversely, when
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Table 1. Hyperparameter Settings for Reinforcement Learning

Category Hyperparameter Value

Policy Optimization Target policy noise 𝜎 N(0, 0.22)
Noise clipping range 𝑐 [−0.5, 0.5]

Network Architecture
Hidden layer dimensions [400, 300]
Activation function ReLU
Layer normalization Disabled

Exploration Random exploration steps 8 × 104

Noise type Pink noise

Training

Discount factor 𝛾 0.99
Replay buffer size 1 × 106

Batch size 256
Target update rate 𝜏 0.005

Optimizer Learning rate 𝛼 3 × 10−4

Optimizer Adam

Softmax Operator Noise sample size 𝐾 50
Softmax temperature 𝛽 10

FEDG Guidance probability 0.3

𝜂 = 2, the noise is characterized as red noise. Pink noise, with
𝜂 = 1, strikes an optimal balance by offering an intermediate level
of temporal correlation between white and red noise, making it a
more suitable default choice for exploration noise in our policy.

Critic Networks. We use dual critic networks𝑄 (•, 𝜃1) and𝑄 (•, 𝜃2)
that simultaneously estimate Q-values (expected cumulative future
rewards) for state-action pairs. This dual-estimator design effectively
reduces variance in value estimation.

Actor Networks. Similarly, our architecture employs dual actor
networks 𝜋1 (•, 𝜙1) and 𝜋2 (•, 𝜙2) that generate action 𝑎 based on
the current environmental state 𝑠 . During training, these policy
networks undergo continuous optimization through gradient ascent
to progressively improve action selection quality. At each timestep 𝑡 ,
the action 𝑎𝑡 is determined through a competitive evaluation process
between twin critics, formally defined as:

𝑎𝑡 = 𝜋𝑘 (𝑠𝑡 ;𝜙𝑘 ) , 𝑘 = arg max
𝑖∈{1,2}

𝑄𝑖 (𝑠, 𝜋𝑖 (𝑠𝑡 ;𝜙𝑖 ) ;𝜃𝑖 ) . (3)

This selection protocol ensures the agent follows the most optimistic
evaluation from its paired value estimators. And the action 𝑎𝑡 of the
fluid driver is constrained to the normalized range [−1, 1].

Target Networks. The target networks are copies of the actor and
critic networks. They enhance the stability of deep reinforcement
learning by maintaining fixed or slowly updated copies of the actor
and critic networks. By decoupling the target values from immedi-
ate updates, they prevent harmful feedback loops and reduce the
risk of divergence during training. This mechanism provides more
consistent temporal difference learning targets, leading to smoother
convergence and improved policy performance. Their use is par-
ticularly effective in value-based and actor-critic methods, where
stable target estimation is crucial for successful learning.

Policy Optimization. The overall flow of the policy optimization
algorithm is shown in Algorithm 1. We obtain a more accurate value
estimation function, facilitating gradient computation and policy
optimization, thereby significantly improving the performance in
complex coupled solid-fluid control tasks.

A.2 Hyperparameters

Table 2. 2D AutoEncoder Encoder Architecture

Layer Kernel Stride #Filters Activation

Conv1 (7, 7) (2, 2) 2→ 64 LeakyReLU (0.1)
Conv2 (7, 7) (2, 2) 64→ 64 LeakyReLU (0.1)
Conv3 (5, 5) (2, 2) 64→ 64 LeakyReLU (0.1)
Conv4 (5, 5) (2, 2) 64→ 128 LeakyReLU (0.1)
Conv5 (5, 5) (2, 2) 128→ 128 LeakyReLU (0.1)
Conv6 (2, 2) (2, 2) 128→ 128 LeakyReLU (0.1)
Conv7 (2, 2) (1, 1) 128→ 64 LeakyReLU (0.1)

Table 3. 3D AutoEncoder Encoder Architecture

Layer Kernel Stride #Filters Activation

Conv1 (3, 3, 3) (2, 2, 2) 3→ 64 LeakyReLU (0.1)
Conv2 (3, 3, 3) (2, 2, 2) 64→ 64 LeakyReLU (0.1)
Conv3 (3, 3, 3) (2, 2, 2) 64→ 128 LeakyReLU (0.1)
Conv4 (5, 3, 2) (1, 1, 1) 128→ 128 LeakyReLU (0.1)
Conv5 (5, 3, 2) (1, 1, 1) 128→ 128 LeakyReLU (0.1)
Conv6 (2, 2, 2) (1, 1, 1) 128→ 64 LeakyReLU (0.1)

Hyperparameters for Autoencoder. The network architecture of
the fluid velocity field autoencoder is detailed in Tables 2 and 3. Each
convolutional layer is followed by BatchNorm, and the decoder fol-
lows a symmetric structure. The input dimensions are (2, 128, 128)
for 2D velocity fields and (3, 80, 40, 32) for 3D fields. During pre-
training, the autoencoder is trained with the Adam optimizer at a
learning rate of 0.001.

A.2.1 Hyperparameters for RL. For reproducibility, we provide the
full hyperparameter settings in Table 1, which includes essential
configurations such as network size, optimizer, guidance probability,
etc. Note that each task’s action 𝑎𝑡 in our work is constrained to
[−1, 1].

B Experimental Details

B.1 Experimental Settings
All experiments are conducted on a workstation equipped with an
NVIDIA GeForce RTX 3090 GPU (24GB VRAM). The software stack
includes:
• Python 3.8.12
• Taichi 1.6.0
• PyTorch 1.10.0
• OpenAI Gym 0.26.2
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Table 4. Benchmark configurations and computational costs for RL training. In the table,𝐺 denotes gravitational acceleration, 𝐸 represents Young’s modulus,
and Δ𝑡 specifies the simulation timestep size. Density Ratio is defined as the ratio of the solid material’s density to that of water. Numsteps indicates the
number of state transitions collected for policy training, and Cost refers to the total computational time required to complete the training process.

Benchmark Task Grid Resolution #Particles 𝐺 𝐸 Density Ratio Δ𝑡 (𝑠) Numsteps Cost

Squeeze
Squeeze with Double Walls 128 × 128 25K 60 1400 0.4–0.7 2 × 10−4 5 × 106 50h
Squeeze with Single Wall 128 × 128 25K 60 1400 0.4–0.7 2 × 10−4 5 × 106 47h
Squeeze Target Balls 128 × 128 25K 60 1400 0.4–0.7 2 × 10−4 5 × 106 51h

Scoop Scoop Balls 128 × 128 25K 60 1400 0.4–0.7 2 × 10−4 5 × 106 34h
Scoop Target Balls 128 × 128 25K 70 900 0.6 1 × 10−4 5 × 106 60h

Balance Single Ball Balance 80 × 40 × 32 26K 60 800 4 2 × 10−4 2 × 106 15h
Double Ball Balance 80 × 40 × 32 27K 60 800 4 2 × 10−4 2 × 106 16h

Transport Transport in X-axis 80 × 40 × 32 26K 60 800 4 2 × 10−4 5 × 106 40h
Transport in 3D Space 80 × 40 × 32 26K 60 800 4 2 × 10−4 5 × 106 60h

Music Single Solid Music Palyer 80 × 40 × 32 26K 60 800 4 2 × 10−4 5 × 106 51h
Double Solid Music Player 80 × 40 × 32 52K 60 800 4 2 × 10−4 5 × 106 83h

This configuration ensures full hardware acceleration and soft-
ware compatibility throughout our experiments. During training,
we evaluate the policy 10 times every 25,000 timesteps. For the
curves, we conduct experiments with at least 3 different random
seeds and report the mean performance, with the shaded regions
indicating 95% confidence intervals.

B.2 Benchmark Details
For all the benchmarks, we use a right-handed coordinate system in
both 2D and 3D spaces. In 2D, the x-axis points right and the y-axis
points up. In 3D, the z-axis points outward, perpendicular to the
xy-plane. The simulation parameters and RL training statistics are
included in the benchmark details listed in table 4. We then provide
further details on each benchmark task.

B.2.1 Squeeze Benchmark (2D). For the squeeze with double walls
task, the state 𝑠 has a dimension of 88, consisting of: (1) 64 fluid
velocity field features, (2) 4 wall features (positions and velocities of
two walls along the x-axis), and (3) 20 ball features (positions and
velocities of 5 balls in both x and y directions). In comparison, the
squeeze with single wall task has a state dimension of 86 (with one
less wall’s features). The episode terminates only when reaching
the maximal length for above tasks. The squeeze target balls task
features an expanded state dimension of 93, which includes addi-
tional binary indicators representing whether each of the five balls
is good or bad. It is terminated when a bad ball enters the net.

B.2.2 Scoop Benchmark (2D). The scoop balls task uses a state 𝑠
representation comprising 90 dimensions: (1) 64 fluid dynamics
features; (2) 20 ball state features (positions and velocities); and (3)
6 spoon features (2D position, 2D velocity, angular position, and
angular velocity). The action space is three-dimensional, controlling
the spoon’s linear accelerations in the x and y directions, as well as
its angular acceleration. For the scoop balls task, which has a state
space of 118 dimensions, we implemented Hindsight Experience
Replay (HER) for all off-policy RL algorithms during training.

B.2.3 Balance Benchmark (3D). For the single ball balance task,
the state 𝑠 has 81 dimensions. The reward function coefficients are
configured as follows: 𝜔1 = 2.5, 𝜔2 = 1.5 and 𝜔3 = 25. A distance
threshold of 𝑑𝑥𝑦 = 0.05 (equal to the ball radius) is used to guide
the fluid spout towards the target. The maximum episode length is
set to 5,000 time steps. The double ball balance variant extends the
dimensionality of the state to 90, while using the same threshold of
𝑑𝑥𝑦=0.05, but with a maximum episode length of just 1,000 steps.

B.2.4 Transport Benchmark (3D). For the transport in x-axis task,
we employ a 90-dimensional state representation with a target dis-
tance threshold of 𝑑𝑥 = 0.17. The maximum episode length is con-
figured at 2,000 time steps, with the 𝑝★

𝑏
being updated every 250

time steps during training. The transport in 3D space variant main-
tains similar configurations but with adjusted distance thresholds:
𝑑𝑥 = 0.4 and 𝑑𝑦 = 0.12.

B.2.5 Music Benchmark (3D). For the single solid music player
task, we employ an 88-dimensional state representation with an
inter-note interval of 100 interaction timesteps. The reward function
coefficients are configured as 𝜇1=35, 𝜇2=0.1, 𝜇3=10, and 𝜇4=25. In
our FEDG setting, the agent is required to position itself beneath
target keys within a 20% temporal error margin. The maximum
episode duration is set to 3,000 timesteps. The double solid music
player variant extends the state dimensionality to 112, with the
same configuration parameters.
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