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Fig. 1. Our off-policy reinforcement learning framework for complex fluid-solid coupling control achieves stable and reliable results through efficient value
estimation and policy guiding. In this benchmark, we achieve stable multi-goal control in the double solid music player task over long horizons. Our trained
policy successfully controls the two fluid drivers (yellow) to prevent the balls from falling, hit the goal key, and play the music at various tempos.

We propose a Reinforcement Learning (RL) algorithm that combines several
novel techniques to achieve more stable and robust control results for cou-
pled solid-fluid systems. Our method utilizes the twin-delayed actor-critic
algorithm to efficiently utilize off-policy data and achieve faster convergence.
For more accurate estimations of the value function to guide the search of
optimal policies, we use the Boltzmann softmax operator to reduce the bias
of estimation. We further introduce a novel two-step Q-value estimator
to reduce the well-known under-estimation issue. Finally, to mitigate the
requirement of excessive exploration under sparse rewards, we propose the
Fluid Effective Domain Guidance (FEDG) algorithm to guide policy explo-
ration, where the policy for an easier task is trained jointly with that for a
harder task. Put together, our framework achieves state-of-the-art perfor-
mance in complex fluid-solid coupling control benchmarks, delivering stable
and reliable performance in both 2D and 3D tasks over long horizons.
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1 INTRODUCTION

Physics-based animation is an active area of research and reaches
a high level of maturity. However, designers still suffer from trial
and error in fine-tuning the setup of physical scenarios to generate
animations that produce the desired visual effects. Therefore, to
further automate the animation design pipeline, a row of animation
control algorithms has been proposed, in which successful examples
involve character control [Bergamin et al. 2019; Chen et al. 2024b;
Cho et al. 2021], dance generation [Alexanderson et al. 2023; Chen
et al. 2021; Tseng et al. 2023], and the control of fluid and solid-fluid
coupled systems [Chu et al. 2021; McNamara et al. 2004]. Among
these works, the control of fluid, particularly solid-fluid coupled
systems, is challenging mainly due to a high degree of freedom (DOF)
and the intricate fluid motions that are highly complex to predict
and even harder to modify in a user-desired manner. The control
of underactuated coupled solid-fluid dynamic systems is crucial
and complex for applications like underwater and aerial robots. In
this work, we focus on addressing the challenge in such systems.
Although interest has been growing among researchers in computer
graphics, physics, and mechanical engineering [Wang et al. 2023],
practical control frameworks remain scarce in the literature.
Recently, a row of novel methods is proposed to tame the solid-
fluid control problem. A line of research [Holl et al. 2020a; Li et al.
2024, 2023; Takahashi et al. 2021] develops differentiable fluid simu-
lators that employ the gradient to optimize for desirable animations,
which is advantageous for tasks that adhere to the differentiable as-
sumptions. However, these methods require specialized simulators
and may not be applicable to tasks that involve non-smooth behav-
iors such as interfacial change between the two coupling objects.
RL, on the other hand, provides greater flexibility by working with
any simulator and handling a diverse range of control tasks. Ma
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et al. [2018] are the first to adopt the on-policy RL [Schulman et al.
2015] in fluid-solid coupling tasks and employ the autoencoder for
fluid velocity field feature extraction. Then, Ren et al. [2022] apply
an off-policy method, significantly improving data efficiency, and
employ meta-learning [Rakelly et al. 2019] to achieve generaliza-
tion across different simulator parameters. These studies validate
the feasibility of RL in fluid-solid coupling tasks. However, their
policies remain stable for only a short time period and are subopti-
mal for complex tasks. To achieve more stable and reliable control
performance under long horizons, numerous challenges need to be
addressed in the RL algorithms, which require urgent attention.

We argue that there are two major issues preventing the prior
work [Ren et al. 2022] from efficiently finding a stable controller.
First, it is widely known that the vanilla actor-critic RL suffers from
the estimation bias in value functions [Fujimoto et al. 2018; Pan et al.
2020]. As such bias is propagated over long trajectories, the policy
performance degrades with longer horizons. Some works [Haarnoja
et al. 2018; Hasselt 2010] mitigate the over-estimation, which in
turn leads to under-estimation. However, neglecting the under-
estimation bias can lead to suboptimal policies. As a second issue,
in coupled control tasks, agents are typically learning under sparse
rewards which require extensive exploration to feel the impact of
reward signals, leading to slow learning and potentially suboptimal
outcomes, or even complete failure to converge.

This paper proposes a series of modifications that improve the
convergence of controller learning. Based on the twin-delayed actor-
critic algorithm, which already deals with over-estimations but
suffers from under-estimation, we introduce the Boltzmann soft-
max operator to significantly reduce the estimation bias in value
functions. Further, we introduce a two-step Bellman operator to
effectively mitigate under-estimation. Finally, we propose the Fluid
Effective Domain Guidance (FEDG) algorithm to tackle sparse re-
wards. FEDG co-trains two policies with shared architecture, one
for a simpler low-level task and the other for a harder high-level
task. Our contributions are summarized below:

e An off-policy RL algorithm for fast & stable controller opti-
mization applied to solid-fluid coupled systems.

e The FEDG for bootstrapping policy under sparse rewards.

e An open-source coupled solid-fluid control system.

Put together, through a row of 2D and 3D coupled control tasks, we
show that our method has improved convergence and more stable
controller performance over long horizons as illustrated in figure 1.
The source code is publicly available at https://github.com/lvsichan/
FluidControl2025.

2 RELATED WORK

In this section, we review the related work on fluid control and
advancements in RL with a focus on estimation bias and exploration.

Fluid control methods can be divided into appearance control
and coupled-rigid-body control. The primary objective of appear-
ance control is to allow fluids to naturally and accurately flow into
user-specified shapes. Early researchers employed external force
control to physically warp fluid density fields into a series of key-
frame shapes [McNamara et al. 2004; Treuille et al. 2003] or a single
target shape [Fattal and Lischinski 2004; Shi and Yu 2005]. Thirey
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et al. [2009] preserves small-scale details by applying control forces
only to coarse velocity components. Nielsen and Bridson [2011]
aligns high-resolution simulations with low-resolution versions
by restricting the solve to a thin outer shell, improving speed and
compatibility with standard fluid simulators. Pan and Manocha
[2017] controls smoke animations by optimizing control force fields
to match key-frames, significantly improving speed over previous
methods. Chu et al. [2021] proposes a data-driven conditional ad-
versarial model, enabling control through obstacles, physical pa-
rameters, kinetic energy, and vorticity. Tang et al. [2023] balances
deformations and physical properties using CNNs and a differen-
tiable simulator, achieving accurate and visually appealing results.
Chen et al. [2024a] utilizes Laplacian Eigenfluids and the adjoint
method, enabling efficient real-time simulation, editing, and control.
Coupled-rigid-body control refers to directly or indirectly utiliz-
ing fluid to drive (rigid) objects within the system to achieve the
desired state of motion. Ma et al. [2018] employs RL to control a
2D coupling system by applying boundary forces, realizing phys-
ically plausible animations. To control complex physical systems
over a long horizon, Holl et al. [2020b] splits planning and con-
trol, using a predictor and control network trained together with
a differentiable PDE solver. Combining meta-RL and a novel task
representation, Ren et al. [2022] designs a learning-based controller
for fluid-solid coupling systems that adapts to changing dynamics
and tasks without retraining. Ramos et al. [2022] proposed to use
a differentiable simulator and physically interpretable loss terms
to train controllers that generalize well to new conditions. Xian
et al. [2023] proposes a simulation platform with a differentiable
physics engine that addresses challenges in robotic fluid manipula-
tion through domain-specific optimization schemes. Li et al. [2023]
designs a differentiable SPH-based fluid-rigid coupling simulator
that tackles gradient instability and high computational cost.
Reinforcement learning algorithms are often categorised as
either on-policy or off-policy [Sutton and Barto 1998], depending
on whether the training data is collected by the current learning
policy. On-policy methods learn exclusively from data generated by
the current policy. By contrast, off-policy methods can reuse past
experiences collected by any previous policy, greatly improving the
data efficiency. On-policy methods like PPO [Schulman et al. 2017]
are stable but slow, making them suitable when data collection is
inexpensive but less ideal for computationally expensive scenarios
such as fluid simulation. In contrast, off-policy methods are more
sample-efficient, enabling faster convergence with less data, but
they often suffer from instability due to estimation bias.
Estimation bias is a ubiquitous challenge in RL, where initial
estimation errors can accumulate over successive timesteps, lead-
ing to substantial biases that may degrade agent performance or
impede algorithm convergence. Thrun and Schwartz [1993] high-
lights that the max operator can lead to over-estimation in Q-
learning [Watkins and Dayan 1992]. Hasselt [2010] then introduces
double Q-learning which eliminates over-estimation but again in-
troduces under-estimation. DDPG [Lillicrap et al. 2016], a preemi-
nent algorithm in the domain of continuous controls is also subject
to estimation bias. In response, Fujimoto et al. [2018] introduces
TD3, which utilizes dual estimators for the critic, employing the
minimum value from two Q-networks to avoid over-estimation.
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While the aforementioned methods have successfully mitigated
over-estimation bias, under-estimation bias still remains, which can
adversely affect overall performance [Ciosek et al. 2019] and is the
main technical challenge that we address.

Exploration to discover high-reward regions in the state space
is crucial in RL. This is notably more challenging in continuous
control environments, particularly in fluid control tasks, where the
action space exhibits a pronounced increase in complexity. The
simplest strategy is to randomly perturb the actions themselves.
Stochastic policies, such as SAC [Haarnoja et al. 2018], naturally
incorporate randomness through action sampling. Deterministic
policies, such as TD3 [Fujimoto et al. 2018] and SD3 [Pan et al.
2020], enhance exploration by adding random noise such as pink
noise [Eberhard et al. 2023] to actions. However, these techniques
can waste computation by exploring in unimportant low-reward
areas [Lee et al. 2021]. In contrast, Luo et al. [2023] proposes Self-
Guided Exploration Strategy (SGES) for complex sequential tasks,
employing simpler learned low-level sub-task policies to guide the
exploration of a more complex high-level policy.

3 PRELIMINARIES

In this section, we formulate our problem of coupled solid-fluid
control and then introduce the main idea behind off-policy RL, which
is adopted as the backbone of our main algorithm framework.

3.1 Problem Statement

Our solid-fluid coupled system comprises three main components:
the fluid driver, the fluid, and the target solid. The moving least
squares material point method (MLS-MPM) [Hu et al. 2018] is pri-
marily used as the simulation algorithm and shape matching [Miiller
et al. 2005] is employed for the target solid to prevent deformation.
The problem of controlling the solid-fluid coupled system, under
the RL paradigm, can be effectively formulated by a Markov Decision
Process (MDP) [van Otterlo and Wiering 2012] as defined by the
tuple (S, A, P, R, y), where S is the set of all states, A the set of all
actions, R : S X A — R the reward function, P the state transition
probability, and y the discount factor. We take the assumption that
the action space A is bounded. At each time t, the agent observes
a state s € S and selects an action a € A according to its policy
7 : S — A. The environment then transitions to the next state sy41
and yields a reward r¢41. The goal of policy 7(-; ¢) parameterized
by ¢ is to maximize the long-term cumulative discount rewards:

J(m) =E X2 v'r(sear) | ar ~ w(st;9), se41 ~ P(lsear)] -

To ensure the seamless integration of our control policies into other
fluid simulation algorithms, such as fluid-implicit-particle (FLIP)
method [Zhu and Bridson 2005] and smoothed particle hydrodynam-
ics (SPH) methods [Becker and Teschner 2007; Miiller et al. 2003],
we use a general-purpose state representation. Specifically, the cou-
pled system state s € S for RL agents comprises three components:
s 2 (d q u). d is the state of the fluid driver and g is the state of the
target solid, e.g. position, orientation, velocity and so on. Finally, u
is the velocity field feature of the fluid, extracted by the pretrained
autoencoder [Vincent et al. 2008] as in [Ma et al. 2018; Ren et al.
2022]. The reward function R generally uses the state g; at time ¢
and the desired state g of the target solid to calculate the reward
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rs. R varies across different control tasks and will be specifically
defined. In our work, the RL policy 7(-; ¢) aims to compute control
actions a; for the fluid driver to manipulate the fluid behavior such
that the target solid achieves its desired state g4, while maximizing
the expected discounted return E[ 372 vird.

3.2 Actor-Critic RL with Deterministic Policy Gradient

We employ an off-policy actor-critic framework with deterministic
policy gradient [Silver et al. 2014] for policy optimization. The actor
utilizes deterministic policy gradient optimization, guided by the
critic’s value function estimation, to select actions that maximize
expected long-term returns. In such methods, the critic’s accurate
estimation of either the state-value or action-value function plays
a decisive role in both the convergence properties and ultimate
performance of the policy. In our work, the policy 7 : S — A,
parameterized by ¢, maps states s € S to actions a = 7(s;§) € A.
The critic evaluates action advantages through a parameterized
state-action value function Q : S X A — R with parameters 6:

Q(s,a;0) =E, [Zzo Yire | so=s,a0 = a] . 1)

The Q-function estimates the maximum cumulative reward achiev-
able by taking action a in state s. Suppose our policy is optimal,
denoted as 7*(s) = argmax, Q* (s, a, 0), then the corresponding
state-action value function is denoted as Q* : S X A — R, which
satisfies the Bellman optimality equation:

Q*(s,a) =E[r(s,a) + ymaxy Q*(s', 7*(s")) |s" ~ P] .

In order to learn the optimal policy and corresponding value func-
tion, off-policy RL uses two steps starting from an initial guess of ¢
and 0. First, the temporal difference error is minimized to approxi-
mate the optimal state-action value function through the Bellman
residual loss:

Leiic =E[IB(s.a.5",a") = Q(s. & 0)I* | (s,a.5") ~ D], (2)

where D is the experience replay buffer, a’ = 7(s’;¢). B is the
Bellman operator which takes the following form in the standard
setting [Lillicrap et al. 2016]:

B(s,a,5",a") =r(s,a) +yQ(s’,a’; 0), 3)

where (s, a, s’, a’) is an unrolled partial trajectory over two timesteps.
Minimizing the Litic leads to more accurate Q-function estimates.
Then, we can update 7 (s; ¢) by the deterministic policy gradient:

Ve  (1(59)) =E [V (n(5:0)) Va(Q(s,a:0)) lazn(s:p) |[s ~ D] (@)

The gradient of the Q-function with respect to the action guides
policy updates toward higher expected return. A limitation in this
optimization paradigm stems from the estimation bias in Q(s, a; 6)
during policy improvement iterations, which is observed and ana-
lyzed in previous work [Fujimoto et al. 2018; Pan et al. 2020], which
also serves as the focal point of this work.

4 METHOD

In this section, we introduce a series of enhancements to the actor-
critic RL that significantly improve its performance in the solid-fluid
coupled control task. We first adopt a Boltzmann softmax operator
based on the clipped Q-value estimator, which reduces the over-
estimation and the variance. Next, we introduce a novel two-step
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Fig. 2. Architecture of our off-policy RL framework for solid-fluid coupled
control tasks. The off-policy reinforcement learning framework efficiently
balance the exploration and exploitation using off-policy transition dataset
(top row). Our critic loss integrates the Boltzmann softmax operator and
the two-step Bellman operator to tackle the estimation bias problem for
Q-values (bottom left). The Fluid Effective Domain Guidance (FEDG) guides
the exploration of the high-level policy optimizing a sparse reward r through
an auxiliary policy optimizing a less sparse reward rq (bottom right).

Bellman operator to further mitigate under-estimation. Finally, we
introduce the FEDG algorithm for guiding policies under sparse
rewards. The pipeline of our method is highlighted in figure 2.

Boltzmann Softmax Operator. It is known that the max opera-
tor in equation 3 can lead to over-estimation [Hasselt et al. 2016],
which is mitigated in TD3 [Fujimoto et al. 2018] using two value
estimators parameterized by 0; and 0, respectively. Specifically,
TD3 introduces the following clipped double-Q Bellman operator:

Brps(s,a,s’,a") = r(s,a) + yQmin(s’, a’)

Qmin(sl> d)= {2%% Q(sl, a’;0;).

Although Brps mitigates over-estimation, it can still suffer from a
high variance because it is essentially a sample approximation of
the groundtruth Bellman operator (see equation 3), where the Q-
value of the next state is maximized over all actions. Although such
maximization does not have a closed-form solution, we could use
the Boltzmann softmax operator to approximate such maximization
by sampling [Pan et al. 2020], where is defined as follows:

SoftmaX—Qﬁ(s) — / eXp(ﬁQmin(s: a))Qmin(S’ a) da
a€A |iecq exp(BQmin (s, a’))da’
Brmax(s,a,5") = (s, a) + ySoftmax-Qp(s”).

The Boltzmann softmax distribution emerges as a prevalent method,
extensively employed for action selection [Cesa-Bianchi et al. 2017;
Sutton and Barto 1998] and policy optimization [Haarnoja et al. 2018;
Song et al. 2019]. The main benefit of using Bnayx is that we could
use importance sampling to better approximate the groundtruth
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Bellman operator (equation 3) and reduce variance using more im-
portance samples. Specifically, we adopt a Gaussian sampling dis-
tribution Ny = N (7(s; ¢), o) with probability density function pg/

and approximate the softmax operator as follows:

exp(,BQmin(saa))Qmin (s,a)
G i ]
Softmax-Qg(s) ~ ¢ ,
exp(BOmin (s,a)) -
E [—Pg(a) a N¢]

Note that we have also incorporated the clipped double-Q estimator
in the softmax operator to mitigate over-estimation (i.e., SD3 pro-
posed by Pan et al. [2020]). For variance reduction, drawing more
samples can incur additional cost in policy and value inferences,
but these additional costs are neglectable compared with the cost of
data collection by fluid simulation.

Lower-bounded Bellman Operator. The estimator Bmax can miti-
gate over-estimation but instead introduces under-estimation due
to the min-operator in Qp,j,. We propose a novel operator to fur-
ther mitigate under-estimation as inspired by the N-step unrolling
method [Hessel et al. 2018]. Let us consider unrolling the partial
trajectory once more to yield a transition tuple (s, a,s’,a’,s”"), we
could then delay the min-operator to the next timestep by defining:

B2 (s,a5,d,s")=r(s,a) +yr(s’,d) + yZSOftmax-Qﬁ(s").

Now since our goal is to mitigate under-estimation, we take the
maximum over the two estimation to derive our final two-step
Bellman operator as follows:

Bo-step(s,a,8',a’,s”) = max [Bmax(s, a,8), Bhay (5,05, d',s")],

where we take the maximum over the two estimators to mitigate
under-estimation. Note that plugging our two-step operator Bz step
into equation 2 would require doubling the cost of importance sam-
pling for the softmax operator. More generally, we could unroll the
trajectory over N steps and blend the solution by the maximum
operator. However, through our extensive experiments in figure 7,
we find that two-step unrolling strikes the best balance between
performance and cost, which already leads to satisfactory results
and further unrolling does not significantly improve results. Our
method further mitigates the underestimation bias compared to SD3,
resulting in improved convergence speed and final performance, as
demonstrated in our 2D scoop benchmark shown in figure 5 and 6.

Exploration Noise. Unlike stochastic policies that explore through
action sampling, our deterministic off-policy methods must rely
on external action noise for exploration. The standard approaches
employ either Gaussian white noise or Ornstein-Uhlenbeck (OU)
red noise [Uhlenbeck and Ornstein 1930] to compensate for this in-
herent exploration limitation. While white noise’s time-independent
nature leads to inefficient exploration, red noise’s temporal correla-
tion improves exploration efficiency [Lillicrap et al. 2016]. However,
its unbounded variance growth may violate action constraints. We
instead adopt pink noise [Eberhard et al. 2023] as our default explo-
ration strategy, balancing between white and red noise properties.



Fluid Effective Domain Guidance (FEDG). Achieving effective and
stable control in fluid-solid coupling control tasks, particularly
in multi-task and multi-goal settings, is a significant challenge
due to the sparse nature of reward signals. Especially during the
initial exploratory phase, this issue hampers the reinforcement
learning agent’s ability to secure a substantial fraction of posi-
tive rewards within complex fluid-solid coupling settings, thereby
leading to either slow convergence or, in some instances, non-
convergence. To mitigate this issue, the hindsight experience replay
(HER) [Andrychowicz et al. 2017] can generate a sufficient number
of positive samples by employing goal relabeling strategies. How-
ever, not all trajectories that result in negative rewards meet the
relabeling criteria, particularly in scenarios where even suboptimal
goals are unattainable. Instead, Luo et al. [2023] employ the SGES
strategy to assist the robotic arm in quickly reaching different target
objects, which uses a low-level policy to guide the arm’s end-effector
to the point where the object is located . Inspired by their work and
integrating it with the fluid-solid coupling control scenarios, we
propose the FEDG algorithm that extends the concept of points into
complex three-dimensional spatial and temporal domains.

Algorithm 1: Data Collection using FEDG
if ro(s) = 0 then
| a=n(s;¢) with guiding probability and a = 7q (s; ¢) o.w.
else
| a=n(s;¢)ow.
end
Add pink noise to action a
Execute action a to yield s’ and observe r(s, a) and rg(s)
D —DU{s,ars')}
if ro(s) = 0 then
| Dg « Do U{(s,arqs)}
end

Specifically, we suppose the user could define a sub-task that
takes the form of a sub-goal region Q, such that reaching the region
could help in achieving the final goal. Therefore, we could define
another reward signal rq (s) = Iq(s), where I (s) is the indicator
function that equals to 1 iff the sub-goal is reached and Ig(s) is
less sparse by the design of Q. FEDG works by training the pol-
icy to reach the sub-goal region Q first and then achieve the final
objective. Specifically, we train two policies & and 7, which are
optimal policies for reward signals r and rq, respectively. We fur-
ther design the two policies to use a shared architecture so that
training the optimal policy 7q for the less sparse reward rg could
provide useful guidance for training . Specifically, we introduce a
policy mrgpg with an augmented state space having an additional
bit indicating whether the policy is 7 or 7q. In other words, we de-
fine 7(s; ) = 7rEDG (s, 05 ) and 7wq (s;$) = wFEDG(S, 1; ¢). During
training, we evaluate rq(s) to see if the sub-goal has been reached.
If rq(s) = 1, then we use the optimal policy for the original task,
setting action to be a = 7(s; ¢). Otherwise, we choose between the
action proposed by 7(s; ¢) and 7 (s; §) with a predefined proba-
bility, denoted as guiding probability. Correspondingly, we store
two replay buffers O and Dq, for training 7 and 7q, respectively.
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Suppose rq(s) = 1, we only populate D with new transition tuples
using r as the reward signal. Otherwise, we populate both O and
Dgq with transition tuples using r and rq as the reward signals,
respectively. The data collection step for FEDG with pink noise is
summarized in algorithm 1.

5 Evaluation

In this section, we design a series of 2D and 3D benchmark tasks
to evaluate our method. When comparing the performance of opti-
mized controllers, we always set a same number of state transition
tuples that can be generated for training the controller.

Table 1. A comparison of policy performance evaluated over 2000 episodes
for each variant of the squeeze task. Our method outperforms all others on
every metric in all control tasks.

Double Walls Single Wall Target Balls

Method

#Balls Reward #Balls Reward #Good #Bad G/B Reward #Steps

SD3 448 80299 123 504.63 213 029 7.26 36589 247.59
TD3 438 783.74 1.09  486.04 197 043 455 33159 21554
SAC 442 75439 137  479.55 213 357 598 359.83 232.34
Ours 4.51 821.22 176 62248 242 0.26 9.16 426.13 257.56

5.1 Squeeze Benchmark (2D)

As illustrated in figure 3, our first benchmark involves a 2D tank
with movable walls at the boundaries, enabling solid balls within the
fluid to enter a net located at the center bottom. Balls can only enter
from directly above the net and can only enter but not exit. The net
does not interact with the fluid but has collision detection against
the ball. We consider three different variants of this benchmark.

Squeeze with Double Walls. In this task, walls are present on both
the left and right sides, capable of horizontal movement within a
specified range, with the goal of maximizing the number of balls that
enter the net. The action a comprises of two variables, each taking
values in the range [—1, 1] representing the acceleration to the left
and right walls, respectively. The state components d and g consists
of the position and velocity of the walls and balls, respectively, and
features of the fluid velocity field. The reward signal is the number
of balls in the net and the maximal episode length is 300.

Squeeze with Single Wall. To demonstrate that our method out-
performs for complex tasks, we increase the difficulty and design
two additional tasks. In this single-wall case, we remove the right
wall, reduce the net size, and set the maximal episode length to 500.
All other settings remain the same.

Squeeze Target Balls. In this case, based on the double-wall task,
2 balls further are designated as bad balls, and the remaining 3 as
good balls. The objective is to maximize the number of good balls
that enter the net while preventing any bad balls from entering. The
state s is augmented with a five-dimensional binary vector ¢, where
¢; = 1iff the i-th ball is a bad ball. The reward r is defined as the
number of good balls minus the number of bad balls in the net. All
other settings stay the same as in the double-wall task.

For evaluation, we compare our method with prominent RL meth-
ods including TD3 [Fujimoto et al. 2018], SAC [Haarnoja et al. 2018],

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 3. (Left)We illustrate snapshots of trajectories for variants of 2D squeeze benchmarks. On the top row, we show frames of a successful trajectory for
squeeze with double walls, where the goal is to control the double walls on the left and right to maximize the number of solid balls into the net. In the middle
row, we show the squeeze with only a single left wall. On the bottom row, we show squeeze for the set of three target good balls, while excluding the two bad
balls. (Right) The converge curves for RL training on variants of the squeeze benchmark: squeeze with double walls (top), squeeze with single wall (middle),
and squeeze target balls (bottom). The results show that our method consistently performs no worse than the others. Moreover, on more challenging tasks,
including the squeezing with single wall and squeezing target balls, our method achieves faster convergence and better final performance.

and SD3 [Pan et al. 2020], where SAC is the RL method used in
prior state-of-the-art [Ren et al. 2022]. For fairness, we are not using
FEDG in all RL method. Each policy is trained by collecting five
million transition tuples and is evaluated over 2000 episodes. The
convergence histories are summarized in figure 3. For squeezing
with double walls, our method achieves an average reward of 821.22
and an average of 4.51 balls into the net, outperforming all other
methods, although the improvement is not major. For the more
challenging task of squeezing with single wall, our average number
of balls is 1.76, which is 28% better than the second to best (SAC).
The reward is 622.48, which is 23% higher than the second to best
(TD3). For the hardest task of squeezing the target ball, the G/B
index of our method is 69% better than SAC and 26% better than
SD3 as shown in table 1. Furthermore, the achieved reward is 426.13,
representing an increase of at least 16% compared to others.

5.2 Scoop Benchmark (2D)

Scoop benchmark, originally proposed by Ren et al. [2022], involves
using spoons to scoop balls from a tank. Our action a involves the
directional and angular accelerations for the spoon. Similar to the
case with squeeze, we consider two variants of the scoop task.

Scoop Balls. In this task, the tank contains five solid balls, and the
goal is to control the spoon to scoop as many balls as possible. The
state component g consists of the position and velocity of each ball,
and the component d consists of the (angular and linear) position
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Fig. 4. The illustration of the scoop benchmark. (a) Scoop balls, the goal is
to control the spoon to scoop as many balls as possible from the fluid. (b)
Scoop target balls, is to scoop all the red balls and keeps out the green balls.

and velocity of the spoon. The reward signal is defined as follows:

{r(s, a) =01 f (x5 = x5) +1(#in > 2) [w2f (%5) + 3£ (65)]
fo) =# exp(=|l o |1*)

where x5 and x} are the position and target position for the spoon,
05 is the angular position of the spoon, and #;, is the number of
balls in the spoon. The goal is to get as many balls as possible in the
spoon and get the spoon in a rest, upright position at the end. w1, wg,
w3 are coefficients set to 2, 0.25, and 0.25, respectively. Each episode
terminates upon reaching the maximum number of 150 timesteps.
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Fig. 5. The convergence histories on variants of the scoop task: scoop balls
(left) and scoop target balls (right). Our method achieves a higher final
reward compared to other methods, particularly on the more challenging
task of scooping target balls. The two subfigures have a shared legend.

Scoop Target Balls. In this case, we specify 2 good balls and 6 bad
balls, where the balls are indicated again using an augmented binary
vector ¢. Our goal is to scoop as many good balls as possible, while
leaving the bad balls out. To achieve this, we redefine the function
as f(o) = (0™#] —w™# )exp(~| o 1), where # and # are the
number of good and bad balls in the spoon and the coefficients w*,
™ are set to 1 and 0.4. All other settings are the same.

0

-50

Bias
Bias

-100

-150

—Ours —2-SD3 - SD3—TD3

-300
0 1 2 3 4 5 0 1 2 3 4
Numsteps 108 Numsteps «10°

Fig. 6. The biases for scoop balls (left) and scoop target balls (right) are the
difference between the Q value and discounted Monte Carlo return. Less
than 0 means underestimation.

To provide a comprehensive comparison, we evaluate against
TRPO [Schulman et al. 2015], PPO [Schulman et al. 2017], and meth-
ods leveraging multi-step information—including a 2-step returns
variant of SD3 (2-SD3), PPO with TD(A) [van Seijen and Sutton 2014],
and SAC with Retrace(4) [Munos et al. 2016]—alongside baseline
methods from the squeeze benchmark. Again, we exclude FEDG
for fairness. We first consider the easier task of scoop balls. As
illustrated in figure 5, after collecting approximately 2.5 million
transition tuples, our method attains the same controller perfor-
mance as one trained using SD3 and SAC. As shown in table 2,
our method achieves the best performance, with an average of 0.53
more balls collected than SAC, representing a 26% increase. Addi-
tionally, our average score is 73 points higher than SAC, exceeding
700. For the more challenging task of scooping target balls, our
method achieves the same performance as SAC and SD3 after col-
lecting 2.5 million transition tuples. Our cumulative reward at final
convergence reaches around 470, which is more than 100 points
higher than that of SD3 and SAC. From table 2, our success rate
reaches 91.8%, while the other methods only reach 70%. The results
demonstrate that our method outperforms both state-of-the-art on-
policy (PPO) and off-policy (SAC, TD3, SD3) methods. Compared
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with other multi-step methods (i.e., 2-SD3, PPO with TD(4), SAC
with Retrace(4)), our method delivers more stable performance and
faster convergence in complex tasks. As evidenced in figure 6, our
method significantly reduces estimation bias, directly contributing
to its superior performance.

Scoop Balls

Scoop Target Balls
1000 500

£ 200

100 /

200 -

Reward
s o
8§ 3
8 8
\‘
§
Reward
w
8
8

Ours
——— B;1q-SD3
SD3

0 -100
0 1 2 3 4 5 0 1 2 3 4 5
Numsteps %108 Numsteps %108

Fig. 7. We extend our Bellman operator to expand 3-steps, which is incor-
porated into SD3 (denoted as B3.step-SD3) and evaluate its performance on
both scoop benchmark tasks. The performances of By-step and Bs.step are
comparable.

To better compare sample efficiency between off-policy and on-
policy methods, we execute the widely-used on-policy algorithm
PPO on the scooping balls task for 50 million interaction steps
and compare the number of interactions required for our method
to achieve the same level of performance. As shown in figure 8,
our method achieves comparable performance with only 1 million
interactions, which demonstrates that PPO is stable but slow, and off-
policy algorithms are more suitable for fluid-solid coupling scenarios
where simulation costs are high.

Reward

100 Ours| |
——PPO
50 | | | | | | | | ]
0 0.5 1 1.5 2 25 3 3.5 4 4.5 5

Numsteps x107

Fig. 8. Comparison of sample efficiency between PPO and our method
on task of scooping balls. After training the on-policy algorithm PPO for
50 million interaction steps, we measured the number of interactions re-
quired by our off-policy method to achieve comparable performance. Our
approach reaches similar performance with only approximately 1 million
interactions—50 times more sample-efficient than PPO.

Additionally, as shown in figure 9, when generalizing the policy
trained on a 128 grid resolution simulation to higher resolutions,
our method experiences a notably smaller performance decrement
compared to SAC. Notably, our method sustains a success rate of
over 50% at a grid resolution above 256, while the success rate of SAC

SA Conference Papers ’25, December 15-18, 2025, Hong Kong, Hong Kong.
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Table 2. The performance of optimized controller on variants of the scoop
task, evaluated over 2,000 episodes for each task.

Method
Tasks Metric
SD3 2-SD3 TD3 PPO TRPO SAC Ours
#Balls 2.02 2.34 2.00 0.89 0.84 2.06 2.59
Scoop Balls

Reward 648.14 711.86 607.35 182.89 171.13 672.64 746.15

Suc. Rate  70.1 69.8 0.1 0.1 0.1 70.0 91.8

ScoopTarget poard 31414 31064 11413 3031 60.19 33674 475.10

consistently declines to around 15%. This suggests that our method
captures more salient information, thereby exhibiting enhanced
generalization and robustness.

100 T T T T T

T T
% —4—Ours —a3—SAC

80 F

70
60 F
50 F

Success Rate

40 F
30F
20 F

10 1 1 1 1 1 1 1

128 192 256 320 384 448 512
Resolution

Fig. 9. We increase the grid resolution of MPM simulator and evaluate on
the task of scooping target balls, using a policy trained on a 128x128 grid
resolution. The success rate is tested over 2000 episodes, where our method
consistently experiences less performance drop.

5.3 Balance Benchmark (3D)

The balance task is a 3D extension of the 2D version proposed by Ma
et al. [2018], with the goal of spraying a solid ball with fluid spouts
to keep its position in the air.

Single Ball Balance. To balance a single ball, our reward signal is:
r(s,a) = wrexp(=llpy = poll®) + @z exp(=[1p5 %) ~ @3Thound (P5), (6)
where py, and py, are the position and velocity of the solid ball, while
Tpound indicates whether the solid ball hits the boundary of the
domain. Essentially, our first term requires the ball to reach the
target position p; and the second term penalizes its velocity, while
the last term prevents the ball from hitting the domain boundary. To
accelerate computation, we adopt FEDG by noting that to properly

control the ball, the fluid spout should first move approximately
under the ball. Therefore, we design the sub-goal as:

Q = {{pp: ps)dxy (pp: ps) < ny},

where p; is the position of the fluid spout, dx; measures the distance
between two objects on the XY-plane, and finally d_xy is a user-
defined upper bound on the distance. As illustrated in figure 10, our
controller trained with FEDG exhibits a more intuitive controller
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Fig. 10. Snapshots of the single ball balance task, trained by controllers
with and without FEDG. With FEDG, our controller exhibits a more natural
strategy, by directly moving the spout below the ball.

strategy by moving the spout directly under the ball, while the one
without FEDG keeps the spout unnecessarily tilted.

Table 3. Keep times (interaction steps) when the policy trained on the ball is
directly transferred to balance other shapes, evaluated over 2,000 episodes.

Shape Cube Cross Octahedron
Keep Times 1913 1340 3227

To demonstrate the generalizability of our method, we also con-
duct training and testing on various geometric shapes (e.g., cube,
cross, octahedron) for balance tasks, with results visualized in fig-
ure 11. Furthermore, to evaluate the robustness of our control policy,
we directly apply the strategy trained on the ball to balance other
shapes, and the stabilization durations are in table 3. The results
confirm the strong generalization capability and stability of our
method across diverse configurations.

Fig. 11. Snapshots of balancing non-spherical shapes: cube (left), cross
(middle), and octahedron (right). A close-up of each shape is shown at top
left.
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Fig. 12. Snapshots of the double ball balance task, where our controller
trained with FEDG moves the spout below the ball with a lower altitude to
prevent both ball from falling too far.

Double Ball Balance. For a more challenging task, we use a single
spout to control two balls by summing over the reward in equation 6
for each ball. We could also use FEDG in this case by noting that
the fluid spout should move under one of the two balls, and it is
better to move to the ball with a lower altitude, which requires more
immediate upward forces. Therefore, we define our sub-goal as:

Q= {<P11,’2>Ps>|dxy(Pi ,Ps) < ny,j* = argminj:u [Pi]z},

where we use a superscript to index the ball and j* is the index
with a lower altitude. Our trained controller illustrated in figure 12
operates in exactly the expected manner. We find that our method
converges much slower without FEDG. Further, without FEDG, our
trained policy can only keep the ball balanced over 300 timesteps,
whereas with FEDG, the ball can be balanced over 2000 timesteps.

——FEDG
No FEDG
Reward Merge

Common CL

Reward
Reward

0 05 1 1.5 2 0 05 1 1.5 2
Numsteps 108 Numsteps 108

Fig. 13. The convergence curves for the double ball balance task. We com-
pare our FEDG with common curriculum learning (CL) and the trivial
method of summing up the low and high rewards (Reward Merge) (left). We
also conducted an ablation study on the guide probability for FEDG (right).

To further illustrate the difference between FEDG and common
curriculum learning (CL), where the low-level reward is used for
the first 25% of timesteps and the high-level reward for the rest, as
well as the impact of non-hierarchical reward settings, we conduct
comparisons on the double ball balance task and perform an ablation
study on the guiding probability. As shown in the figure 13, our
method not only converges faster but also achieves a higher reward.
The ablation study suggests that an optimal guidance probability of
0.3 (our default setting) effectively balances exploration guidance
with minimal disruption to high-level policy learning.
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5.4 Transport Benchmark (3D)

In these tasks, we employ a single spout to transport the ball to
different target locations at fixed time intervals, which includes two
variants: transport only in the X-axis and transport in all three axes.
We use a right-handed system with the X-axis pointing to the right,
the Y-axis pointing up and the Z-axis pointing out.

Transport in X-axis. In this task, we ensure relative stability along
the y-axis and z-axis, while achieving transportation to the target
x-axis position. When p;, reaches pl’; within ¢ timesteps, we update
the target position at random. Otherwise, we simply terminate the
episode. The reward function is designed as follows:

r(s,a) =01 exp(=llpy = ppll*) + w0z exp(=lIpp %) -
wﬂ('[?;]x = [pplxl > dx),

where the first two terms play the same role as in equation 6, while
the third term penalizes the state if the target position along the
X-axis is not reached. For this task, we could also use FEDG by

setting Q £ {pb ( |pp1x — (Lo} Tx/dic) +1/2)dx] < d’x/z}, which
essentially divides the domain into blocks of size dy and requires
the ball to be within the block that contains the target position.

Reward

o N w & oo o N ®

T

2 4 6 8 10 12 2 4 6 8 10 12
Numsteps. x10% Numsteps <105

Fig. 14. The convergence curves for the two variants of the transport task:
Transport in X-axis (left) and transport in 3D space (right). Comparing sce-
narios with and without the FEDG algorithm, we demonstrate that efficient
exploration with FEDG significantly improves convergence performance.

Transport in 3D Space. In this task, we aim to transport the ball
along the X-, Y- and Z-axes simultaneously. We partition the whole
space into 3 X 2 X 2 cubes along the three axes, randomly select one
of the cubes, and transport the ball to the center of the cube. The
reward function takes the following even simpler form:

r(s,a) = w1 exp(=llpy — pyll*) + w2 exp(=llpplI*), ™
and we similarly employ FEDG by setting:
o=y “Pb]x - (L[Pb*]x/czxj + 1/2)d_x| < d_x/2
= b _ — - N
’[Pb]z - (L[PZ]z/dzJ + 1/2)dz| <d;/2
which essentially requires the ball to be within the target cube of
size (dx, d;) in the horizontal XZ-plane.

The snapshots of our trained controller are given in figure 16 and
the convergence history with and without FEDG is presented in
figure 14. For such complex tasks, RL agents without FEDG either
converge very slowly for the easier case of transport in X-axis, or
fail to converge for the harder case of transport in 3D space, while
FEDG significantly boosts the performance.

SA Conference Papers '25, December 15-18, 2025, Hong Kong, Hong Kong.
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Fig. 15. Snapshots of single-ball music player, which play music at a relatively fixed tempo. After hitting a key, our robust spout controller will first catch the
ball and then move to the next target directly under the key and wait for the time to hit it.
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Fig. 16. Our method successfully trains robust controllers for the transport
tasks with FEDG. We refer readers to the video for the full demo.

5.5 Music Benchmark (3D)

The final benchmark extends the 3D multi-solid music player bench-
mark in Ren et al. [2022], using fluid spouts to control balls that hit
keys at the top to play music. In this benchmark, we control each
ball with a separate spout to achieve more complex multi-goal tasks.

5.5.1 Single Solid Music Palyer. In the single solid case, we employ
a single spout and a single ball within a rectangular simulation
area to play the music. The upper section of the area is subdivided
into seven equal segments along the x-axis, with each segment
containing a key corresponding to the seven musical notes. To play
a music script, the ball must hit the target key indexed as k* at a
specified time t*. To this end, we design the reward as:

r(s,a) = Ingp(s) (1 — pizlt = %1 = pslk = K1) = pa (1 = Tye (5)),
where I;; is an indicator of hitting the key indexed by k at timestep
t. However, if we directly train using the sparse reward, the al-
gorithm fails to converge, which is again mitigated by FEDG. To
define the sub-goal, we aim to first move the ball under the tar-
get key k* with a specified time range denoted as At, so we set
Q = {pb |pb under key k* and |t — t*| < At}. We further notice
that in order to move the ball under the target key, we can provide
a better-conditioned guidance by using a denser reward in the same
form as equation 7. Therefore, instead of using ro = I, we set:

r(s,a) = w1 exp(=llpy = pplI®) + w2 exp(=|Ipp|I*) + wsla(s),

where we set p; to be the point below the target key. As illustrated
in figure 15, our policy demonstrates the ability to play music with
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a relatively fixed tempo through efficient exploration with FEDG.
Moreover, in tests involving randomly triggered notes, our method
achieves a success rate of 85%.

Double Solid Music Player. In the more challenging variant, we
perform a variable-tempo music-playing task. We use two spouts
and two balls to play more complex music scripts. The reward and
FEDG setting stays the same as the single-solid case, but we use
two separate rewards for each ball and sum them up. The efficacy
of our method is demonstrated by its ability to facilitate multi-
tempo musical execution. During the random testing phase, the hit
precision is averaged at 75%.

6 CONCLUSION

We propose several enhancements to the actor-critic RL frame-
work to solve a row of challenging solid-fluid coupled control tasks.
Our main contributions involve a more accurate Q-value estimator,
which uses a two-step trajectory unrolling to mitigate the under-
estimation. We further proposes a policy guiding approach that
stochastically blend a high- and low-level policy for more efficient
exploration under sparse rewards. Our results highlight the im-
proved convergence and controller performance under a row of
complex 2D and 3D benchmarks.

Our main limitation lies in the inaccurate timing control of the
learned policy and the still-high overall training cost. To this partly
due to the inherent high cost of the underlying simulator. In the
future, we plan to incorporate distributed training, enabling faster
data collection and training on more complex tasks. Recent works
on differentiable simulators such as [Li et al. 2023] could also be
incorporated to enable model-based RL for better sampling efficacy.
Finally, our novel RL algorithm is general-purpose and we plan to
evaluate it on more general benchmarks.
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